cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338927 Locations of records in A338565.

Original entry on oeis.org

1, 4, 6, 8, 12, 24, 36, 48, 72, 96, 144, 192, 240, 288, 384, 432, 576, 864, 1152, 1440, 1728, 2304, 2880, 3456, 4320, 4608, 5184, 5760, 6912, 8640, 10368, 11520, 13824, 17280, 20736, 23040, 25920, 27648, 34560, 41472, 51840, 62208, 69120, 82944
Offset: 1

Views

Author

Robert Israel, Nov 15 2020

Keywords

Comments

The first term divisible by 3 is a(3)=6.
The first term divisible by 5 is a(13)=240.
The first term divisible by 11 is a(48)=190080.

Examples

			a(3) = 6 is in the sequence because A338565(6) = 3 is greater than A338565(n) for n < 6.
		

Crossrefs

Programs

  • Maple
    ispali:= proc(n) local L;
      L:= convert(n,base,10);
      evalb(L = ListTools:-Reverse(L))
    end proc:
    N:= 200000: # for terms <= N
    Palis:= select(ispali, {$2..N}):
    A338565:= Vector(N):
    A338565[1]:= 1:
    R:= 1: bestv:= 1:
    A[1]:= 1:
    for n from 2 to N do
      A[n]:=  add(A[n/d], d= numtheory:-divisors(n) intersect Palis);
        if A[n] > bestv then bestv:= A[n]; R:= R, n
    od:
    R;
  • Mathematica
    Block[{a, s}, a[n_] := If[n == 1, n, Sum[If[(d < n && PalindromeQ[n/d]), a[d], 0], {d, Divisors[n]}]]; s = Array[a, 10^4]; Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]] ] (* Michael De Vlieger, Nov 15 2020 *)