cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338946 Lengths of Cunningham chains of the second kind that are sorted by first prime in the chain.

This page as a plain text file.
%I A338946 #11 Jun 30 2025 04:23:26
%S A338946 3,2,1,1,3,1,1,2,1,1,1,1,1,1,1,3,1,1,2,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,
%T A338946 1,1,1,2,2,1,1,2,1,1,1,1,1,1,1,2,1,1,1,2,1,1,3,2,1,1,1,1,2,1,2,1,1,1,
%U A338946 1,1,1,1,3,1,1,1,1,1,1,1,1,3,1,1,1,1,2,1,1,1,1,2,1,1,1,2,2,1,3,1,1,1,1,1,1
%N A338946 Lengths of Cunningham chains of the second kind that are sorted by first prime in the chain.
%C A338946 Row lengths of A338944.
%H A338946 Michael De Vlieger, <a href="/A338946/b338946.txt">Table of n, a(n) for n = 1..10000</a>
%H A338946 Chris K. Caldwell, <a href="https://primes.utm.edu/glossary/page.php?sort=CunninghamChain">Cunningham Chain</a> (PrimePages, Prime Glossary).
%H A338946 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cunningham_chain">Cunningham chain</a>.
%e A338946 We start with p = 2. Since 2(2) - 1 = 3 is prime, and further 2(3) - 1 = 5 is prime, but 2(5) - 1 is composite, we have chain length 3, so a(1) = 3.
%e A338946 p = 7 is the smallest prime that hasn't appeared in a chain thus far; since 2(7) - 1 = 13 is prime but 2(13) - 1 = 25 is composite, we have a chain of length 2, so a(2) = 2.
%e A338946 p = 11 is the smallest prime that hasn't appeared in a chain; 2(11) - 1 = 21 is composite, so we have a singleton chain, thus a(3) = 1, etc.
%t A338946 Block[{a = {2}, b = {}, j = 0, k, p}, Do[k = Length@ b + 1; If[PrimeQ@ a[[-1]], AppendTo[a, 2 a[[-1]] - 1]; j++, While[! FreeQ[a, Set[p, Prime[k]]], k++]; AppendTo[b, j]; Set[j, 0]; Set[a, Append[a[[1 ;; -2]], p]]], {10^3}]; b]
%Y A338946 Cf. A075712, A338944, A338945.
%K A338946 nonn
%O A338946 1,1
%A A338946 _Michael De Vlieger_, Nov 17 2020