A338945 Lengths of Cunningham chains of the first kind that are sorted by first prime in the chain.
5, 2, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1
Offset: 1
Keywords
Examples
We begin with the smallest prime 2. Since 2(5) + 1 = 11 is prime, further, 2(11) + 1 = 23, 2(23) + 1 = 47 are prime but 2(47) + 1 = 95 is not, we have the complete chain {2, 5, 11, 23, 47} of length 5, thus a(1) = 5. We resume with 3, since 3 has not appeared in any chain generated thus far. Since 2(3) + 1 = 7, but 2(7) + 1 = 15, we have the complete chain {3, 7}, therefore a(2) = 2. Starting from 13, we find 2(13) + 1 = 27, thus we have a singleton chain and have a(3) = 1, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Chris K. Caldwell, Cunningham Chain (PrimePages, Prime Glossary).
- Wikipedia, Cunningham chain.
Programs
-
Mathematica
Block[{a = {2}, b = {}, j = 0, k, p}, Do[k = Length@ b + 1; If[PrimeQ@ a[[-1]], AppendTo[a, 2 a[[-1]] + 1]; j++, While[! FreeQ[a, Set[p, Prime[k]]], k++]; AppendTo[b, j]; Set[j, 0]; Set[a, Append[a[[1 ;; -2]], p]]], {10^3}]; b]
Comments