cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338948 Number of oriented colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.

This page as a plain text file.
%I A338948 #14 Mar 10 2024 13:34:13
%S A338948 1,30968,490710246,488689596200,103480643539150,8226360697111116,
%T A338948 332606338581801018,8198553131754111456,138483409168412322525,
%U A338948 1736111115543474313600,17100230356306262961356,138015359782116886130568
%N A338948 Number of oriented colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.
%C A338948 Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It is self-dual. There are 576 elements in the rotation group of the 24-cell. They divide into 20 conjugacy classes. The first formula is obtained by averaging the vertex (or facet) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
%C A338948    Count   Even Cycle Indices      Count   Even Cycle Indices
%C A338948        1   x_1^24                     36   x_2^2x_4^5
%C A338948       18   x_1^4x_2^10                32   x_2^3x_6^3
%C A338948       72   x_1^2x_2^11               6+6   x_4^6
%C A338948        1   x_2^12                 8+8+32   x_6^4
%C A338948       32   x_1^6x_3^6              72+72   x_8^3
%C A338948       36   x_1^4x_4^5              48+48   x_12^2
%C A338948   8+8+32   x_3^8
%H A338948 Robert A. Russell, <a href="/A338948/b338948.txt">Table of n, a(n) for n = 1..30</a>
%H A338948 <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
%F A338948 a(n) = (96*n^2 + 144*n^3 + 48*n^4 + 44*n^6 + 36*n^7 + 48*n^8 + 36*n^9 + 33*n^12 + 72*n^13 + 18*n^14 + n^24) / 576.
%F A338948 a(n) = 1*C(n,1) + 30966*C(n,2) + 490617345*C(n,3) + 486726941020*C(n,4) + 101042102350935*C(n,5) + 7612797366078810*C(n,6) + 277177820254686645*C(n,7) + 5762279787373449480*C(n,8) + 75992221900428179850*C(n,9) + 682000715348622816300*C(n,10) + 4372841482811937689400*C(n,11) + 20731958137729666674000*C(n,12) + 74473828855001644068000*C(n,13) + 206154110634594043521600*C(n,14) + 444564429725793817440000*C(n,15) + 751083930907369899840000*C(n,16) + 994782360855398955840000*C(n,17) + 1027991414661948696960000*C(n,18) + 819571017352669021440000*C(n,19) + 494068244672052610560000*C(n,20) + 217722453472796912640000*C(n,21) + 66156028946382735360000*C(n,22) + 12387424687382384640000*C(n,23) + 1077167364120207360000*C(n,24), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
%F A338948 a(n) = A338949(n) + A338950(n) = 2*A338949(n) - A338951(n) = 2*A338950(n) + A338951(n).
%t A338948 Table[(96n^2+144n^3+48n^4+44n^6+36n^7+48n^8+36n^9+33n^12+72n^13+18n^14+n^24)/576,{n,15}]
%Y A338948 Cf. A338949 (unoriented), A338950 (chiral), A338951 (achiral), A338952 (edges, faces), A337895 (5-cell), A337952 (8-cell vertices, 16-cell facets), A337956 (16-cell vertices, 8-cell facets), A338964 (120-cell, 600-cell).
%K A338948 nonn,easy
%O A338948 1,2
%A A338948 _Robert A. Russell_, Nov 17 2020