cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338949 Number of unoriented colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.

This page as a plain text file.
%I A338949 #15 Mar 24 2024 10:58:38
%S A338949 1,18736,249563343,245072692820,51780391393325,4114243321427946,
%T A338949 166320182540310771,4099464588809407728,69243270244113372390,
%U A338949 868065984969662449300,8550173137863803682016,69007957379144017626756
%N A338949 Number of unoriented colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.
%C A338949 Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It is self-dual.
%H A338949 Robert A. Russell, <a href="/A338949/b338949.txt">Table of n, a(n) for n = 1..30</a>
%H A338949 <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
%F A338949 a(n) = (96*n^2 + 144*n^3 + 144*n^4 + 140*n^6 + 300*n^7 + 120*n^8 + 36*n^9 + 45*n^12 + 84*n^13 + 18*n^14 + 12*n^15 + 12*n^18 + n^24) / 1152.
%F A338949 a(n) = 1*C(n,1) + 18734*C(n,2) + 249507138*C(n,3) + 244074551860*C(n,4) + 50557523375300*C(n,5) + 3807232072474470*C(n,6) + 138599298699649830*C(n,7) + 2881219380682352640*C(n,8) + 37996512548398853085*C(n,9) + 341001760994302265550*C(n,10) + 2186424231002014796100*C(n,11) + 10365985337974980021000*C(n,12) + 37236922591331944681200*C(n,13) + 103077062953464218018400*C(n,14) + 222282219864764987928000*C(n,15) + 375541967632270447008000*C(n,16) + 497391180994576316448000*C(n,17) + 513995707397665741248000*C(n,18) + 409785508676334510720000*C(n,19) + 247034122336026305280000*C(n,20) + 108861226736398456320000*C(n,21) + 33078014473191367680000*C(n,22) + 6193712343691192320000*C(n,23) + 538583682060103680000*C(n,24), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors.
%F A338949 a(n) = A338948(n) - A338950(n) = (A338948(n) + A338951(n)) / 2 = A338950(n) + A338951(n).
%t A338949 Table[(96n^2+144n^3+144n^4+140n^6+300n^7+120n^8+36n^9+45n^12+84n^13+18n^14+12n^15+12n^18+n^24)/1152,{n,15}]
%t A338949 LinearRecurrence[{25,-300,2300,-12650,53130,-177100,480700,-1081575,2042975,-3268760,4457400,-5200300,5200300,-4457400,3268760,-2042975,1081575,-480700,177100,-53130,12650,-2300,300,-25,1},{1,18736,249563343,245072692820,51780391393325,4114243321427946,166320182540310771,4099464588809407728,69243270244113372390,868065984969662449300,8550173137863803682016,69007957379144017626756,471182396311499869193288,2790108355121570273031710,14612960014479438426745050,68774495831757984888966336,294660451484256436406752191,1161683435155207577365494648,4252399462403852518286044405,14563558286595288907896687700,46968928774940328123724865031,143447144215320073513164583826,416884377543198363455158598933,1157756823443195554136397711600,3083952997773835021725260467500},20] (* _Harvey P. Dale_, Mar 24 2024 *)
%Y A338949 Cf. A338948 (oriented), A338950 (chiral), A338951 (achiral), A338953 (edges, faces), A000389 (5-cell), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338965 (120-cell, 600-cell).
%K A338949 nonn,easy
%O A338949 1,2
%A A338949 _Robert A. Russell_, Nov 17 2020