cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338951 Number of achiral colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.

This page as a plain text file.
%I A338951 #14 Mar 10 2024 13:39:01
%S A338951 1,6504,8416440,1455789440,80139247500,2125945744776,34026498820524,
%T A338951 376045864704000,3131319814422255,20854395850585000,
%U A338951 115919421344402676,554976171149122944,2343894146343268610,8896568181794053320
%N A338951 Number of achiral colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.
%C A338951 An achiral coloring is identical to its reflection. The Schläfli symbol of the 24-cell is {3,4,3}. It is self-dual. There are 576 elements in the automorphism group of the 24-cell that are not in its rotation group. They divide into 10 conjugacy classes. The first formula is obtained by averaging the vertex (or facet) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
%C A338951   Count    Odd Cycle Indices     Count    Odd Cycle Indices
%C A338951     12     x_1^12x_2^6             72     x_2^2x_4^5
%C A338951     12     x_1^6x_2^9              96     x_1^2x_2^2x_6^3
%C A338951     12     x_1^2x_2^11             96     x_2^3x_3^2x_6^2
%C A338951     12     x_2^12                  96     x_3^4x_6^2
%C A338951     72     x_1^2x_2^1x_4^5         96     x_6^4
%H A338951 Robert A. Russell, <a href="/A338951/b338951.txt">Table of n, a(n) for n = 1..30</a>
%H A338951 <a href="/index/Rec#order_19">Index entries for linear recurrences with constant coefficients</a>, signature (19, -171, 969, -3876, 11628, -27132, 50388, -75582, 92378, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1).
%F A338951 a(n) = (8*n^4 + 8*n^6 + 22*n^7 + 6*n^8 + n^12 + n^13 + n^15 + n^18) / 48.
%F A338951 a(n) = 1*C(n,1) + 6502*C(n,2) + 8396931*C(n,3) + 1422162700*C(n,4) + 72944399665*C(n,5) + 1666778870130*C(n,6) + 20777144613015*C(n,7) + 158973991255800*C(n,8) + 803196369526320*C(n,9) + 2806639981714800*C(n,10) + 6979192091902800*C(n,11) + 12538220293368000*C(n,12) + 16327662245294400*C(n,13) + 15272334392515200*C(n,14) + 10003736158416000*C(n,15) + 4357170994176000*C(n,16) + 1133753677056000*C(n,17) + 133382785536000*C(n,18), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
%F A338951 a(n) = 2*A338949(n) - A338948(n) = A338948(n) - 2*A338950(n) = A338949(n) - A338950(n).
%t A338951 Table[(8n^4+8n^6+22n^7+6n^8+n^12+n^13+n^15+n^18)/48,{n,15}]
%Y A338951 Cf. A338948 (oriented), A338949 (unoriented), A338950 (chiral), A338955 (edges, faces), A132366 (5-cell), A337955 (8-cell vertices, 16-cell facets), A337958 (16-cell vertices, 8-cell facets), A338967 (120-cell, 600-cell).
%K A338951 nonn,easy
%O A338951 1,2
%A A338951 _Robert A. Russell_, Nov 17 2020