cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338954 Number of chiral pairs of colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using subsets of a set of n colors.

This page as a plain text file.
%I A338954 #13 Mar 13 2024 13:49:21
%S A338954 68774446614978208476646592,
%T A338954 5523164445430505077912054084256733211946217,
%U A338954 5448873034189827051926943172520863487560602391778344960,10956401461402941741829554371669666304159415287557559324930859375
%N A338954 Number of chiral pairs of colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using subsets of a set of n colors.
%C A338954 Each member of a chiral pair is a reflection but not a rotation of the other. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual.
%H A338954 Robert A. Russell, <a href="/A338954/b338954.txt">Table of n, a(n) for n = 2..30</a>
%H A338954 <a href="/index/Rec#order_97">Index entries for linear recurrences with constant coefficients</a>, order 97.
%F A338954 a(n) = (96*n^8 + 144*n^12 - 48*n^16 - 64*n^18 - 192*n^20 - 60*n^24 +
%F A338954 48*n^32 + 32*n^36 - 5*n^48 + 72*n^50 - 12*n^52 - 12*n^60 + n^96) / 1152.
%F A338954 a(n) = Sum_{j=2..Min(n,96)} A338958(n) * binomial(n,j).
%F A338954 a(n) = A338952(n) - A338953(n) = (A338952(n) - A338955(n)) / 2 = A338953(n) - A338955(n).
%t A338954 Table[(96n^8+144n^12-48n^16-64n^18-192n^20-60n^24+48n^32+32n^36-5n^48+72n^50-12n^52-12n^60+n^96)/1152,{n,2,15}]
%Y A338954 Cf. A338952 (oriented), A338953 (unoriented), A338955 (achiral), A338958 (exactly n colors), A338950 (vertices, facets), A331352 (5-cell), A331360 (8-cell edges, 16-cell faces), A331356 (16-cell edges, 8-cell faces), A338966 (120-cell, 600-cell).
%K A338954 nonn,easy
%O A338954 2,1
%A A338954 _Robert A. Russell_, Nov 17 2020