cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338955 Number of achiral colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using subsets of a set of n colors.

This page as a plain text file.
%I A338955 #15 Mar 13 2024 13:45:23
%S A338955 1,24124751133507584,883287060208158070437496209,
%T A338955 27692675763559261523047959805034496,
%U A338955 18070082615414169898334284655914306640625,1018202231744161700740376040914469837333037056
%N A338955 Number of achiral colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using subsets of a set of n colors.
%C A338955 An achiral coloring is identical to its reflection. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. There are 576 elements in the automorphism group of the 24-cell that are not in its rotation group. They divide into 10 conjugacy classes. The first formula is obtained by averaging the edge (or face) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
%C A338955   Count    Odd Cycle Indices     Count    Odd Cycle Indices
%C A338955      12    x_1^24x_2^36             96    x_1^2x_2^2x_3^2x_6^14
%C A338955      12    x_1^8x_2^44              96    x_3^8x_6^12
%C A338955   12+12    x_3^48                   96    x_2^3x_6^15
%C A338955   72+72    x_4^24                   96    x_6^16
%H A338955 Robert A. Russell, <a href="/A338955/b338955.txt">Table of n, a(n) for n = 1..30</a>
%H A338955 <a href="/index/Rec#order_61">Index entries for linear recurrences with constant coefficients</a>, order 61.
%F A338955 a(n) = (8*n^16 + 8*n^18 + 16*n^20 + 12*n^24 + 2*n^48 + n^52 + n^60) / 48.
%F A338955 a(n) = Sum_{j=1..Min(n,60)} A338959(n) * binomial(n,j).
%F A338955 a(n) = 2*A338953(n) - A338952(n) = A338952(n) - 2*A338954(n) = A338953(n) - A338954(n).
%t A338955 Table[(8n^16+8n^18+16n^20+12n^24+2n^48+n^52+n^60)/48,{n,15}]
%Y A338955 Cf. A338952 (oriented), A338953 (unoriented), A338954 (chiral), A338959 (exactly n colors), A338951 (vertices, facets), A331353 (5-cell), A331361 (8-cell edges, 16-cell faces), A331357 (16-cell edges, 8-cell faces), A338967 (120-cell, 600-cell).
%K A338955 nonn,easy
%O A338955 1,2
%A A338955 _Robert A. Russell_, Nov 17 2020