cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338956 Number of oriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.

This page as a plain text file.
%I A338956 #17 Dec 20 2020 02:21:43
%S A338956 1,137548893254081168086800766,
%T A338956 11046328890861010626464488614428032600986342,
%U A338956 10897746068335468788318134977474134922662053604436974448,21912802868317153141871319582922663027477920477404414535105616050
%N A338956 Number of oriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
%C A338956 Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>96, a(n) = 0.
%H A338956 Robert A. Russell, <a href="/A338956/b338956.txt">Table of n, a(n) for n = 1..96</a>
%F A338956 A338952(n) = Sum_{j=1..Min(n,96)} a(n) * binomial(n,j).
%F A338956 a(n) = A338957(n) + A338958(n) = 2*A338957(n) - A338959(n) = 2*A338958(n) + A338959(n).
%t A338956 bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (* binomial series *)
%t A338956 Drop[CoefficientList[bp[8]/6+bp[12]/4+bp[16]/12+bp[18]/18+7bp[24]/48+bp[32]/12+bp[36]/18+19bp[48]/576+bp[50]/8+bp[96]/576,x],1]
%Y A338956 Cf. A338957 (unoriented), A338958 (chiral), A338959 (achiral), A338952 (up to n colors), A338948 (vertices, facets), A331350 (5-cell), A331358 (8-cell edges, 16-cell faces), A331354 (16-cell edges, 8-cell faces), A338980 (120-cell, 600-cell).
%K A338956 nonn
%O A338956 1,2
%A A338956 _Robert A. Russell_, Nov 17 2020