cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338957 Number of unoriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.

This page as a plain text file.
%I A338957 #14 Dec 20 2020 02:21:46
%S A338957 1,68774446639102959610154174,
%T A338957 5523164445430505754875774375105924818979901,
%U A338957 5448873034167734394172913824852272971748608894646534804,10956401434158576570935668826433407535831446552957081921713485225
%N A338957 Number of unoriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
%C A338957 Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>96, a(n) = 0.
%H A338957 Robert A. Russell, <a href="/A338957/b338957.txt">Table of n, a(n) for n = 1..96</a>
%F A338957 A338953(n) = Sum_{j=1..Min(n,96)} a(n) * binomial(n,j).
%F A338957 a(n) = A338956(n) - A338958(n) = (A338956(n) + A338959(n)) / 2 = A338958(n) + A338959(n).
%t A338957 bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (* binomial series *)
%t A338957 Drop[CoefficientList[bp[8]/12+bp[12]/8+bp[16]/8+bp[18]/9+bp[20]/6+19bp[24]/96+bp[32]/24+bp[36]/36+43bp[48]/1152+bp[50]/16+bp[52]/96+bp[60]/96+bp[96]/1152,x],1]
%Y A338957 Cf. A338956 (oriented), A338958 (chiral), A338959 (achiral), A338953 (up to n colors), A338949 (vertices, facets), A063843 (5-cell), A331359 (8-cell edges, 16-cell faces), A331355 (16-cell edges, 8-cell faces), A338981 (120-cell, 600-cell).
%K A338957 fini,nonn,full
%O A338957 1,2
%A A338957 _Robert A. Russell_, Nov 17 2020