This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338958 #14 Dec 20 2020 02:21:50 %S A338958 68774446614978208476646592, %T A338958 5523164445430504871588714239322107782006441, %U A338958 5448873034167734394145221152621861950913444709790439644,10956401434158576570935650756489255491646473924447332613392130825 %N A338958 Number of chiral pairs of colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors. %C A338958 Each member of a chiral pair is a reflection but not a rotation of the other. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>96, a(n) = 0. %H A338958 Robert A. Russell, <a href="/A338958/b338958.txt">Table of n, a(n) for n = 2..96</a> %F A338958 A338954(n) = Sum_{j=2..Min(n,96)} a(n) * binomial(n,j). %F A338958 a(n) = A338956(n) - A338957(n) = (A338956(n) - A338959(n)) / 2 = A338957(n) - A338959(n). %t A338958 bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (*binomial series*) %t A338958 Drop[CoefficientList[bp[8]/12+bp[12]/8-bp[16]/24-bp[18]/18-bp[20]/6-5bp[24]/96+bp[32]/24+bp[36]/36-5bp[48]/1152+bp[50]/16-bp[52]/96-bp[60]/96+bp[96]/1152,x],2] %Y A338958 Cf. A338956 (oriented), A338957 (unoriented), A338959 (achiral), A338954 (up to n colors), A338950 (vertices, facets), A331352 (5-cell), A331360 (8-cell edges, 16-cell faces), A331356 (16-cell edges, 8-cell faces), A338982 (120-cell, 600-cell). %K A338958 fini,nonn,full %O A338958 2,1 %A A338958 _Robert A. Russell_, Nov 17 2020