cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338959 Number of achiral colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.

This page as a plain text file.
%I A338959 #14 Dec 20 2020 02:21:54
%S A338959 1,24124751133507582,883287060135783817036973460,
%T A338959 27692672230411020835164184856095160,
%U A338959 18069944152044184972628509749308321354400,1018093811663859334508633754250963606821400320
%N A338959 Number of achiral colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
%C A338959 An achiral coloring is identical to its reflection. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>60, a(n) = 0.
%H A338959 Robert A. Russell, <a href="/A338959/b338959.txt">Table of n, a(n) for n = 1..60</a>
%F A338959 A338955(n) = Sum_{j=1..Min(n,60)} a(n) * binomial(n,j).
%F A338959 a(n) = 2*A338957(n) - A338956(n) = A338956(n) - 2*A338958(n) = A338957(n) - A338958(n).
%t A338959 bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (*binomial series*)
%t A338959 Drop[CoefficientList[bp[16]/6+bp[18]/6+bp[20]/3+bp[24]/4+bp[48]/24+bp[52]/48+bp[60]/48,x],1]
%Y A338959 Cf. A338956 (oriented), A338957 (unoriented), A338958 (chiral), A338955 (up to n colors), A338951 (vertices, facets), A331353 (5-cell), A331361 (8-cell edges, 16-cell faces), A331357 (16-cell edges, 8-cell faces), A338983 (120-cell, 600-cell).
%K A338959 fini,nonn,full
%O A338959 1,2
%A A338959 _Robert A. Russell_, Nov 17 2020