This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338962 #15 Dec 19 2020 08:05:27 %S A338962 30,3366,183684,8092632,316544562,11481159930,395458712832, %T A338962 13123275738432,423525613823934,13378503050329794,415551681048983880, %U A338962 12735329289585862200,386086186106267296494,11601553028839397641626,346091203382132944992240,10262539815169483791720708 %N A338962 Number of (undirected) paths in C_6 X P_n. %o A338962 (Python) %o A338962 # Using graphillion %o A338962 from graphillion import GraphSet %o A338962 def make_CnXPk(n, k): %o A338962 grids = [] %o A338962 for i in range(1, k + 1): %o A338962 for j in range(1, n): %o A338962 grids.append((i + (j - 1) * k, i + j * k)) %o A338962 grids.append((i + (n - 1) * k, i)) %o A338962 for i in range(1, k * n, k): %o A338962 for j in range(1, k): %o A338962 grids.append((i + j - 1, i + j)) %o A338962 return grids %o A338962 def A(start, goal, n, k): %o A338962 universe = make_CnXPk(n, k) %o A338962 GraphSet.set_universe(universe) %o A338962 paths = GraphSet.paths(start, goal) %o A338962 return paths.len() %o A338962 def B(n, k): %o A338962 m = k * n %o A338962 s = 0 %o A338962 for i in range(1, m): %o A338962 for j in range(i + 1, m + 1): %o A338962 s += A(i, j, n, k) %o A338962 return s %o A338962 def A338962(n): %o A338962 return B(6, n) %o A338962 print([A338962(n) for n in range(1, 6)]) %Y A338962 Cf. A338709, A338960, A338961, A338963. %K A338962 nonn %O A338962 1,1 %A A338962 _Seiichi Manyama_, Dec 18 2020