cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338967 Number of achiral colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using subsets of a set of n colors.

This page as a plain text file.
%I A338967 #18 Jul 05 2024 14:10:08
%S A338967 1,314843647550280564736,5068890957390271123224826359979956,
%T A338967 11893730816857265534982913331475052373213184,
%U A338967 220581496716947452381892465686737251285705566406250
%N A338967 Number of achiral colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using subsets of a set of n colors.
%C A338967 An achiral coloring is identical to its reflection. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. There are 7200 elements in the automorphism group of the 120-cell that are not in its rotation group. They divide into 9 conjugacy classes. The first formula is obtained by averaging the vertex (or facet) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
%C A338967   Count   Odd Cycle Indices      Count   Odd Cycle Indices
%C A338967      60   x_1^30x_2^45            1200   x_1^2x_2^2x_6^19
%C A338967      60   x_1^2x_2^59          720+720   x_2^5x_5^6x_10^8
%C A338967    1800   x_2^2x_4^29          720+720   x_1^2x_2^4x_10^11
%C A338967    1200   x_2^3x_3^10x_6^14
%C A338967 Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide formulas here.
%C A338967 For the 600 facets of the 600-cell (vertices of the 120-cell), the cycle indices are:
%C A338967   Count    Odd Cycle Indices        Count    Odd Cycle Indices
%C A338967     60     x_1^60x_2^270             1200     x_2^6x_6^98
%C A338967     60     x_2^300                720+720     x_5^12x_10^54
%C A338967   1800     x_1^2x_2^1x_4^149      720+720     x_10^60
%C A338967   1200     x_2^6x_3^20x_6^88
%C A338967 The formula is (24*n^60 + 24*n^66 + 20*n^104 + 20*n^114 + 30*n^152 + n^300 + n^330) / 120.
%C A338967 For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the cycle indices are:
%C A338967   Count   Odd Cycle Indices      Count   Odd Cycle Indices
%C A338967      60   x_1^72x_2^324           1200   x_6^120
%C A338967      60   x_2^360              720+720   x_1^2x_2^4x_5^14x_10^64
%C A338967    1800   x_2^4x_4^178         720+720   x_2^5x_10^71
%C A338967    1200   x_3^24x_6^108
%C A338967 The formula is (24*n^76 + 24*n^84 + 20*n^120 + 20*n^132 + 30*n^182 + n^360 + n^396) / 120.
%C A338967 For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the cycle indices are:
%C A338967   Count   Odd Cycle Indices          Count   Odd Cycle Indices
%C A338967      60   x_1^80x_2^560               1200   x_2^3x_6^199
%C A338967      60   x_2^600                  720+720   x_5^16x_10^112
%C A338967    1800   x_2^4x_4^298             720+720   x_10^120
%C A338967    1200   x_1^2x_2^2x_3^26x_6^186
%C A338967 The formula is (24*n^120 + 24*n^128 + 20*n^202 + 20*n^216 + 30*n^302 + n^600 + n^640) / 120.
%H A338967 Robert A. Russell, <a href="/A338967/b338967.txt">Table of n, a(n) for n = 1..30</a>
%H A338967 <a href="/index/Rec#order_76">Index entries for linear recurrences with constant coefficients</a>, order 76.
%F A338967 a(n) = (24*n^17 + 24*n^19 + 20*n^23 + 20*n^27 + 30*n^31 + n^61 + n^75) / 120.
%F A338967 a(n) = Sum_{j=1..Min(n,75)} A338983(n) * binomial(n,j).
%F A338967 a(n) = 2*A338965(n) - A338964(n) =(A338964(n) - 2*A338966(n)) / 2 = A338965(n) - A338966(n).
%t A338967 Table[(24n^17+24n^19+20n^23+20n^27+30n^31+n^61+n^75)/120,{n,10}]
%o A338967 (PARI) a(n)=(24*n^17+24*n^19+20*n^23+20*n^27+30*n^31+n^61+n^75)/120 \\ _Charles R Greathouse IV_, Jul 05 2024
%Y A338967 Cf. A338964 (oriented), A338965 (unoriented), A338966 (chiral), A338983 (exactly n colors), A132366 (5-cell), A337955 (8-cell vertices, 16-cell facets), A337958(16-cell vertices, 8-cell facets), A338951 (24-cell).
%K A338967 nonn,easy
%O A338967 1,2
%A A338967 _Robert A. Russell_, Dec 04 2020