cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A338969 a(n) is the sum of the lengths of all the segments used to draw a rectangle of height partition(n) and width n divided into partition(n) rectangles of unit height, in turn, divided into rectangles of unit height and lengths corresponding to the parts of the partitions of n.

This page as a plain text file.
%I A338969 #45 Jun 20 2025 08:12:06
%S A338969 4,11,21,41,67,118,181,292,437,664,958,1412,1983,2819,3899,5406,7328,
%T A338969 9977,13317,17817,23497,30967,40349,52573,67784,87320,111601,142395,
%U A338969 180432,228317,287110,360476,450261,561346,696699,863199,1065055,1311824,1610026,1972444
%N A338969 a(n) is the sum of the lengths of all the segments used to draw a rectangle of height partition(n) and width n divided into partition(n) rectangles of unit height, in turn, divided into rectangles of unit height and lengths corresponding to the parts of the partitions of n.
%H A338969 <a href="/index/Par#partitions">Index entries for related partition-counting sequences</a>
%F A338969 a(n) = (n + 1)*A000041(n) + n + A006128(n).
%F A338969 a(n) = A066186(n) + A000041(n) + A225596(n).
%e A338969 Illustrations for n = 1..6:
%e A338969       _           _ _          _ _ _
%e A338969      |_|         |_ _|        |_ _ _|
%e A338969                  |_|_|        |_ _|_|
%e A338969                               |_|_|_|
%e A338969   a(1) = 4     a(2) = 11     a(3) = 21
%e A338969    _ _ _ _     _ _ _ _ _    _ _ _ _ _ _
%e A338969   |_ _ _ _|   |_ _ _ _ _|  |_ _ _ _ _ _|
%e A338969   |_ _ _|_|   |_ _ _ _|_|  |_ _ _ _ _|_|
%e A338969   |_ _|_ _|   |_ _ _|_ _|  |_ _ _ _|_ _|
%e A338969   |_ _|_|_|   |_ _ _|_|_|  |_ _ _ _|_|_|
%e A338969   |_|_|_|_|   |_ _|_ _|_|  |_ _ _|_ _ _|
%e A338969               |_ _|_|_|_|  |_ _ _|_ _|_|
%e A338969               |_|_|_|_|_|  |_ _ _|_|_|_|
%e A338969                            |_ _|_ _|_ _|
%e A338969                            |_ _|_ _|_|_|
%e A338969                            |_ _|_|_|_|_|
%e A338969                            |_|_|_|_|_|_|
%e A338969   a(4) = 41    a(5) = 67    a(6) = 118
%t A338969 a[n_]:=(n+1)PartitionsP[n]+n+Sum[DivisorSigma[0,m] PartitionsP[n-m], {m,n}]; Table[a[n],{n,40}]
%Y A338969 Cf. A000041, A006128, A066186, A211992, A225596, A278355.
%K A338969 nonn
%O A338969 1,1
%A A338969 _Stefano Spezia_, Dec 23 2020