This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338987 #20 Mar 07 2025 16:13:33 %S A338987 1,1,2,6,24,108,596,3674,26068,202470,1753884,16435754,168174596, %T A338987 1842418704,21757407158,272771715272,3649515044178,51532670206504, %U A338987 770442883634326,12093451621846094,199856952123506304,3452120352032161404,62471981051497913826,1177664861561125869100,23163177237781937250558 %N A338987 Number of rooted graceful labelings with n edges. %C A338987 A graceful labeling of a graph with n edges assigns distinct labels l(v) to the vertices such that 0<=l(v)<=n and the n differences |l(u)-l(v)| between labels of adjacent vertices are distinct. It is rooted if, in addition, either |l(u)-l(w)|>|l(u)-l(v)| for some neighbor of u or |l(v)-l(w)|>|l(u)-l(v)| for some neighbor of v, whenever |l(u)-l(v)|<n. %C A338987 To generate such a labeling, choose one of the k+1 edges 0--(n-k), 1--(n+1-k), ..., k--(n-k), for each k=0, 1, ..., n-1, provided that at least one of the endpoints has already appeared in a previously chosen edge when k>0. %H A338987 David A. Sheppard, <a href="http://dx.doi.org/10.1016/0012-365X(76)90051-0">The factorial representation of major balanced labelled graphs</a>, Discrete Math., Vol. 15, No. 4 (1976), 379-388. %e A338987 a(5) = 108 < 120 = 5!, because 0--5,0--4,0--3,3--5,1--2 and 0--5,1--5,2--5,0--2,1--3 are forbidden, as well as five each beginning with 0--5,0--4,2--5,1--3 and 0--5,1--4,0--3,2--4. %o A338987 (Python) %o A338987 def solve(d, m_in): %o A338987 global _n, _cache %o A338987 args = (d, m_in) %o A338987 if args in _cache: %o A338987 return _cache[args] %o A338987 if d == 0: %o A338987 rv = 1 %o A338987 else: %o A338987 rv = 0 %o A338987 m_test = 1 | (1<<d) %o A338987 for p in range(_n + 1 - d): %o A338987 if m_in & m_test: %o A338987 rv += solve(d-1, m_in | m_test) %o A338987 m_test <<= 1 %o A338987 _cache[args] = rv %o A338987 return rv %o A338987 def a338987(n): %o A338987 global _cache, _n %o A338987 _cache, _n = {}, n %o A338987 return 1 if n<2 else 2*solve(n-2, 3|(1<<n)) %o A338987 # _Bert Dobbelaere_, Dec 23 2020 %Y A338987 Without rootedness, the number of graceful labelings is n!, A000142, as observed by Sheppard in 1976. %K A338987 nonn %O A338987 0,3 %A A338987 _Don Knuth_, Dec 20 2020 %E A338987 a(17)-a(24) from _Bert Dobbelaere_, Dec 23 2020