This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A338999 #32 Nov 25 2020 14:15:50 %S A338999 1,1,3,11,43,180,804,3763,18331,92330,478795,2547885,13880832, %T A338999 77284220,439146427,2543931619,15010717722,90154755356,550817917537, %U A338999 3421683388385,21601986281226,138548772267326,902439162209914,5967669851051612,40053432076016812 %N A338999 Number of connected multigraphs with n edges and rooted at two indistinguishable vertices whose removal leaves a connected graph. %C A338999 This sequence counts the CDE-descendants of a single edge A-Z. %C A338999 [C]onnect: different nodes {P,Q} != {A,Z} may form a new edge P-Q. %C A338999 [D]issect: any edge P-Q may be dissected into P-M-Q with a new node M. %C A338999 [E]xtend: any node P not in {A,Z} may form a new edge P-Q with a new node Q. %C A338999 These basic operations were motivated by A338487, which seemed to count the CDE-descendants of K_4 with edge A-Z removed. %D A338999 Technology Review's Puzzle Corner, How many different resistances can be obtained by combining 10 one ohm resistors? Oct 3, 2003. %H A338999 Joel Karnofsky, <a href="https://web.archive.org/web/20111123142636/http://www.cs.nyu.edu/~gottlieb/tr/2003-oct-3.pdf">Solution of problem from Technology Review's Puzzle Corner Oct 3, 2003</a>, Feb 23, 2004. %e A338999 The a(3) = 3 CDE-descendants of A-Z with 3 edges are %e A338999 . %e A338999 A A A %e A338999 ( ) / / %e A338999 o o - o o - o %e A338999 | / \ %e A338999 Z Z Z %e A338999 . %e A338999 DCC DD DE %e A338999 . %o A338999 (PARI) \\ See A339065 for G. %o A338999 InvEulerT(v)={my(p=log(1+x*Ser(v))); dirdiv(vector(#v,n,polcoef(p,n)), vector(#v,n,1/n))} %o A338999 seq(n)={my(A=O(x*x^n), g=G(2*n, x+A,[]), gr=G(2*n, x+A,[1])/g, u=InvEulerT(Vec(-1+G(2*n, x+A,[1,1])/(g*gr^2))), t=InvEulerT(Vec(-1+G(2*n, x+A,[2])/(g*subst(gr,x,x^2)))), v=vector(n)); for(n=1, #v, v[n]=(u[n]+t[n]-if(n%2==0,u[n/2]-v[n/2]))/2); v} \\ _Andrew Howroyd_, Nov 20 2020 %Y A338999 Cf. A180414, A337517, A338487, A339038, A339045, A339065. %K A338999 nonn %O A338999 1,3 %A A338999 _Rainer Rosenthal_, Nov 18 2020 %E A338999 a(7)-a(25) from _Andrew Howroyd_, Nov 20 2020