This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339003 #18 Apr 22 2025 05:08:35 %S A339003 10,22,34,46,55,62,82,85,94,115,118,134,146,155,166,187,194,205,206, %T A339003 218,235,253,254,274,295,298,314,334,335,341,358,365,382,391,394,415, %U A339003 422,451,454,466,482,485,514,515,517,527,538,545,554,566,614,626,635,649 %N A339003 Numbers of the form prime(x) * prime(y) where x and y are distinct and both odd. %C A339003 The squarefree semiprimes in A332822. - _Peter Munn_, Dec 25 2020 %F A339003 Numbers m such that A001221(m) = A001222(m) = A195017(m) = 2. - _Peter Munn_, Dec 31 2020 %e A339003 The sequence of terms together with their prime indices begins: %e A339003 10: {1,3} 187: {5,7} 358: {1,41} 527: {7,11} %e A339003 22: {1,5} 194: {1,25} 365: {3,21} 538: {1,57} %e A339003 34: {1,7} 205: {3,13} 382: {1,43} 545: {3,29} %e A339003 46: {1,9} 206: {1,27} 391: {7,9} 554: {1,59} %e A339003 55: {3,5} 218: {1,29} 394: {1,45} 566: {1,61} %e A339003 62: {1,11} 235: {3,15} 415: {3,23} 614: {1,63} %e A339003 82: {1,13} 253: {5,9} 422: {1,47} 626: {1,65} %e A339003 85: {3,7} 254: {1,31} 451: {5,13} 635: {3,31} %e A339003 94: {1,15} 274: {1,33} 454: {1,49} 649: {5,17} %e A339003 115: {3,9} 295: {3,17} 466: {1,51} 662: {1,67} %e A339003 118: {1,17} 298: {1,35} 482: {1,53} 685: {3,33} %e A339003 134: {1,19} 314: {1,37} 485: {3,25} 694: {1,69} %e A339003 146: {1,21} 334: {1,39} 514: {1,55} 697: {7,13} %e A339003 155: {3,11} 335: {3,19} 515: {3,27} 706: {1,71} %e A339003 166: {1,23} 341: {5,11} 517: {5,15} 713: {9,11} %t A339003 Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&] %o A339003 (Python) %o A339003 from math import isqrt %o A339003 from sympy import primepi, primerange %o A339003 def A339003(n): %o A339003 def bisection(f,kmin=0,kmax=1): %o A339003 while f(kmax) > kmax: kmax <<= 1 %o A339003 kmin = kmax >> 1 %o A339003 while kmax-kmin > 1: %o A339003 kmid = kmax+kmin>>1 %o A339003 if f(kmid) <= kmid: %o A339003 kmax = kmid %o A339003 else: %o A339003 kmin = kmid %o A339003 return kmax %o A339003 def f(x): return n+x-sum(primepi(x//p)-a>>1 for a,p in enumerate(primerange(isqrt(x)+1),1) if a&1) %o A339003 return bisection(f,n,n) # _Chai Wah Wu_, Apr 03 2025 %Y A339003 A338910 is the not necessarily squarefree version. %Y A339003 A339004 is the even instead of odd version. %Y A339003 A001358 lists semiprimes, with odd and even terms A046315 and A100484. %Y A339003 A005117 lists squarefree numbers. %Y A339003 A006881 lists squarefree semiprimes, with odd and even terms A046388 and A100484. %Y A339003 A289182/A115392 list the positions of odd/even terms of A001358. %Y A339003 A300912 lists products of two primes of relatively prime index. %Y A339003 A320656 counts factorizations into squarefree semiprimes. %Y A339003 A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506. %Y A339003 A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900. %Y A339003 A338904 groups semiprimes by weight. %Y A339003 A338906/A338907 list semiprimes of even/odd weight. %Y A339003 A339002 lists products of two distinct primes of non-relatively prime index. %Y A339003 A339005 lists products of two distinct primes of divisible index. %Y A339003 Cf. A001221, A001222, A056239, A112798, A166237, A195017, A318990, A320911, A338901, A338903, A338911. %Y A339003 Subsequence of A332822. %K A339003 nonn %O A339003 1,1 %A A339003 _Gus Wiseman_, Nov 21 2020