cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339005 Numbers of the form prime(x) * prime(y) where x properly divides y. Squarefree semiprimes with divisible prime indices.

Original entry on oeis.org

6, 10, 14, 21, 22, 26, 34, 38, 39, 46, 57, 58, 62, 65, 74, 82, 86, 87, 94, 106, 111, 115, 118, 122, 129, 133, 134, 142, 146, 158, 159, 166, 178, 183, 185, 194, 202, 206, 213, 214, 218, 226, 235, 237, 254, 259, 262, 267, 274, 278, 298, 302, 303, 305, 314, 319
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    6: {1,2}    82: {1,13}  159: {2,16}  259: {4,12}
   10: {1,3}    86: {1,14}  166: {1,23}  262: {1,32}
   14: {1,4}    87: {2,10}  178: {1,24}  267: {2,24}
   21: {2,4}    94: {1,15}  183: {2,18}  274: {1,33}
   22: {1,5}   106: {1,16}  185: {3,12}  278: {1,34}
   26: {1,6}   111: {2,12}  194: {1,25}  298: {1,35}
   34: {1,7}   115: {3,9}   202: {1,26}  302: {1,36}
   38: {1,8}   118: {1,17}  206: {1,27}  303: {2,26}
   39: {2,6}   122: {1,18}  213: {2,20}  305: {3,18}
   46: {1,9}   129: {2,14}  214: {1,28}  314: {1,37}
   57: {2,8}   133: {4,8}   218: {1,29}  319: {5,10}
   58: {1,10}  134: {1,19}  226: {1,30}  321: {2,28}
   62: {1,11}  142: {1,20}  235: {3,15}  326: {1,38}
   65: {3,6}   146: {1,21}  237: {2,22}  334: {1,39}
   74: {1,12}  158: {1,22}  254: {1,31}  339: {2,30}
		

Crossrefs

A300912 is the version for relative primality.
A318990 is the not necessarily squarefree version.
A339002 is the version for non-relative primality.
A339003 is the version for odd indices.
A339004 is the version for even indices
A001358 lists semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with difference A338900.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&& Divisible@@Reverse[PrimePi/@First/@FactorInteger[#]]&]

Formula

Equals A318990 \ A000290.