This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339006 #15 Aug 01 2021 13:17:07 %S A339006 1,1,3,5,11,20,40,72,130,227,395,671,1124,1864,3040,4909,7830,12394, %T A339006 19388,30145,46395,70977,107661,162383,243108,362037,535684,788677, %U A339006 1154605,1682402,2439123,3520706,5058786,7239027,10315920,14644309,20709800,29182353 %N A339006 Sum over all partitions lambda of n of binomial(|lambda|, |{lambda}|). %C A339006 |lambda| is the number of parts in lambda and |{lambda}| is the number of distinct parts. %H A339006 Alois P. Heinz, <a href="/A339006/b339006.txt">Table of n, a(n) for n = 0..1000</a> %p A339006 b:= proc(n, i, p, d) option remember; `if`(n=0, binomial(p, d), %p A339006 `if`(i<1, 0, add(b(n-i*j, i-1, p+j, `if`(j=0, d, d+1)), j=0..n/i))) %p A339006 end: %p A339006 a:= n-> b(n$2, 0$2): %p A339006 seq(a(n), n=0..50); %t A339006 b[n_, i_, p_, d_] := b[n, i, p, d] = If[n == 0, Binomial[p, d], %t A339006 If[i<1, 0, Sum[b[n-i*j, i-1, p+j, If[j == 0, d, d+1]], {j, 0, n/i}]]]; %t A339006 a[n_] := b[n, n, 0, 0]; %t A339006 Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Aug 01 2021, after _Alois P. Heinz_ *) %Y A339006 Cf. A108492, A339011, A339312. %K A339006 nonn %O A339006 0,3 %A A339006 _Alois P. Heinz_, Nov 18 2020