cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339019 Square table read by upwards antidiagonals: T(m,n) = A103438(2*m-1,n)/A103438(1,n) for m>=1, n>=1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 11, 6, 1, 1, 43, 46, 10, 1, 1, 171, 386, 130, 15, 1, 1, 683, 3366, 1870, 295, 21, 1, 1, 2731, 29866, 28234, 6455, 581, 28, 1, 1, 10923, 267086, 437350, 149031, 17941, 1036, 36, 1
Offset: 1

Views

Author

Franz Vrabec, Dec 24 2020

Keywords

Examples

			T(3,4) = A103438(2*3-1,4)/A103438(1,4) = 1300/10 = 130.
By formula: a(2,3) = 4*15*1*1*B(4) = -2 and a(3,3) = (-8)*15*4*(2/4)*B(4) = 8 yields T(3,n) = (-N+4*N^2)/3. Since N = 4*5/2 = 10, T(3,4) = (4*10^2-10)/3 = 130.
Table begins:
m\n| 1    2      3       4        5         6          7
---+-----------------------------------------------------
1  | 1    1      1       1        1         1          1
2  | 1    3      6      10       15        21         28
3  | 1   11     46     130      295       581       1036
4  | 1   43    386    1870     6455     17941      42868
5  | 1  171   3366   28234   149031    586341    1880956
6  | 1  683  29866  437350  3546775  19809461   85475908
7  | 1 2731 267086 6871138 85960967 683338501 3972825676
		

Crossrefs

Cf. A103438.

Formula

Let a(i,m) = ((-2)^i)*Sum_{j=0..i} C(2*m,i-j)*C(i+j,j)*((i-j)/(i+j))*B(2*m-i+j), B(s) = A027641(s)/A027642(s) the Bernoulli numbers and N = n*(n+1)/2, then T(m,n) = (1/(2*m))*Sum_{i=2..m} a(i,m)*N^(i-1).