A339019 Square table read by upwards antidiagonals: T(m,n) = A103438(2*m-1,n)/A103438(1,n) for m>=1, n>=1.
1, 1, 1, 1, 3, 1, 1, 11, 6, 1, 1, 43, 46, 10, 1, 1, 171, 386, 130, 15, 1, 1, 683, 3366, 1870, 295, 21, 1, 1, 2731, 29866, 28234, 6455, 581, 28, 1, 1, 10923, 267086, 437350, 149031, 17941, 1036, 36, 1
Offset: 1
Examples
T(3,4) = A103438(2*3-1,4)/A103438(1,4) = 1300/10 = 130. By formula: a(2,3) = 4*15*1*1*B(4) = -2 and a(3,3) = (-8)*15*4*(2/4)*B(4) = 8 yields T(3,n) = (-N+4*N^2)/3. Since N = 4*5/2 = 10, T(3,4) = (4*10^2-10)/3 = 130. Table begins: m\n| 1 2 3 4 5 6 7 ---+----------------------------------------------------- 1 | 1 1 1 1 1 1 1 2 | 1 3 6 10 15 21 28 3 | 1 11 46 130 295 581 1036 4 | 1 43 386 1870 6455 17941 42868 5 | 1 171 3366 28234 149031 586341 1880956 6 | 1 683 29866 437350 3546775 19809461 85475908 7 | 1 2731 267086 6871138 85960967 683338501 3972825676
Crossrefs
Cf. A103438.