This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339030 #19 Nov 28 2020 12:46:47 %S A339030 1,0,1,0,2,1,0,3,6,1,0,4,24,8,1,0,5,85,50,10,1,0,6,300,280,75,12,1,0, %T A339030 7,1071,1540,525,105,14,1,0,8,3976,8456,3570,840,140,16,1,0,9,15219, %U A339030 47208,24381,6552,1260,180,18,1 %N A339030 T(n, k) = Sum_{p in P(n, k)} card(p), where P(n, k) is the set of set partitions of {1,2,...,n} where the largest block has size k and card(p) is the number of blocks of p. Triangle T(n, k) for 0 <= k <= n, read by rows. %e A339030 Triangle starts: %e A339030 0: [1] %e A339030 1: [0, 1] %e A339030 2: [0, 2, 1] %e A339030 3: [0, 3, 6, 1] %e A339030 4: [0, 4, 24, 8, 1] %e A339030 5: [0, 5, 85, 50, 10, 1] %e A339030 6: [0, 6, 300, 280, 75, 12, 1] %e A339030 7: [0, 7, 1071, 1540, 525, 105, 14, 1] %e A339030 8: [0, 8, 3976, 8456, 3570, 840, 140, 16, 1] %e A339030 9: [0, 9, 15219, 47208, 24381, 6552, 1260, 180, 18, 1] %e A339030 . %e A339030 T(4,0) = 0 = 0*card({}) %e A339030 T(4,1) = 4 = 4*card({1|2|3|4}). %e A339030 T(4,2) = 24 = 3*card({12|3|4, 13|2|4, 1|23|4, 14|2|3, 1|24|3, 1|2|34}) %e A339030 + 2*card({12|34, 13|24, 14|23}). %e A339030 T(4,3) = 8 = 2*card({123|4, 124|3, 134|2, 1|234}). %e A339030 T(4,4) = 1 = 1*card({1234}). %e A339030 . %e A339030 Seen as the projection of a 2-dimensional statistic this is, for n = 6: %e A339030 [ 0 0 0 0 0 0 0] %e A339030 [ 0 0 0 0 0 0 6] %e A339030 [ 0 0 0 45 180 75 0] %e A339030 [ 0 0 20 180 80 0 0] %e A339030 [ 0 0 30 45 0 0 0] %e A339030 [ 0 0 12 0 0 0 0] %e A339030 [ 0 1 0 0 0 0 0] %e A339030 The row sum projection gives row 6 of this triangle, and the column sum projection gives [0, 1, 62, 270, 260, 75, 6], which appears in a decapitated version as row 5 in A321331. %o A339030 (SageMath) %o A339030 def A339030Row(n): %o A339030 if n == 0: return [1] %o A339030 M = matrix(n + 1) %o A339030 for k in (1..n): %o A339030 for p in SetPartitions(n): %o A339030 if p.max_block_size() == k: %o A339030 M[k, len(p)] += p.cardinality() %o A339030 return [sum(M[k, j] for j in (0..n)) for k in (0..n)] %o A339030 for n in (0..9): print(A339030Row(n)) %Y A339030 Cf. A005493 with 1 prepended are the row sums. %Y A339030 Cf. A080510, A262071, A321331. %K A339030 nonn,tabl %O A339030 0,5 %A A339030 _Peter Luschny_, Nov 22 2020