This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339033 #22 May 31 2024 14:43:54 %S A339033 1,0,1,0,2,2,0,3,2,6,0,4,3,4,24,0,5,4,6,12,120,0,6,5,8,18,48,720,0,7, %T A339033 6,10,24,72,240,5040,0,8,7,12,30,96,360,1440,40320,0,9,8,14,36,120, %U A339033 480,2160,10080,362880,0,10,9,16,42,144,600,2880,15120,80640,3628800 %N A339033 Triangle read by rows, T(n, k) for 0 <= k <= n. T(n, 0) = 0^n; T(n, n) = n!; otherwise T(n, k) = (n + 1 - k)*(k - 1)!. %C A339033 Related to the multinomial that is called M2 in Abramowitz and Stegun, p. 831. %H A339033 Paolo Xausa, <a href="/A339033/b339033.txt">Table of n, a(n) for n = 0..11475</a> (rows 0..150 of the triangle, flattened). %H A339033 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, page 831. %F A339033 T(n, k) = n! / A092271(n, k) for k > 0. %e A339033 Triangle starts: %e A339033 0: [1] %e A339033 1: [0, 1] %e A339033 2: [0, 2, 2] %e A339033 3: [0, 3, 2, 6] %e A339033 4: [0, 4, 3, 4, 24] %e A339033 5: [0, 5, 4, 6, 12, 120] %e A339033 6: [0, 6, 5, 8, 18, 48, 720] %e A339033 7: [0, 7, 6, 10, 24, 72, 240, 5040] %e A339033 8: [0, 8, 7, 12, 30, 96, 360, 1440, 40320] %e A339033 9: [0, 9, 8, 14, 36, 120, 480, 2160, 10080, 362880] %t A339033 A339033[n_, k_] := Which[k == 0, Boole[n == 0], n == k, n!, True, (n+1-k)*(k-1)!]; %t A339033 Table[A339033[n, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Jan 31 2024 *) %o A339033 (SageMath) %o A339033 def A339033(n, k): %o A339033 if k == 0: return 0^n %o A339033 if n == k: return factorial(n) %o A339033 return (n + 1 - k)*factorial(k - 1) %o A339033 for n in (0..10): print([A339033(n, k) for k in (0..n)]) %o A339033 def A339033Row(n): %o A339033 S = [0^n] %o A339033 for k in range(n, 0, -1): %o A339033 for p in Partitions(n, max_part=k, inner=[k], length=n+1-k): %o A339033 S.append(p.aut()) %o A339033 return S %o A339033 for n in (0..10): print(A339033Row(n)) %Y A339033 Cf. A339034 (row sums), A092271. %K A339033 nonn,tabl %O A339033 0,5 %A A339033 _Peter Luschny_, Nov 20 2020