A339046 Irregular triangle read by rows: row n gives the complete quadrupling system modulo N = 2*n + 1, for n >= 0.
1, 1, 2, 1, 4, 2, 3, 1, 4, 2, 3, 5, 6, 1, 4, 7, 2, 8, 5, 1, 4, 5, 9, 3, 2, 8, 10, 7, 6, 1, 4, 3, 12, 9, 10, 2, 8, 6, 11, 5, 7, 1, 4, 2, 8, 7, 13, 11, 14, 1, 4, 16, 13, 2, 8, 15, 9, 3, 12, 14, 5, 6, 7, 11, 10, 1, 4, 16, 2, 8, 11, 5, 20, 17, 10, 19, 13, 1, 4, 16, 18, 3, 12, 2, 8, 9, 13, 6, 2, 8, 9, 13, 6, 1, 4, 16, 18, 3, 12
Offset: 0
Examples
The irregular triangle begins (the vertical bar separates the cycles): n, N \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ... 0, 1: 1 1, 3: 1|2 2, 5: 1 4| 2 3 3, 7: 1 4 2| 3 5 6 4, 9: 1 4 7| 2 8 5 5, 11: 1 4 5 9 3| 2 8 10 7 6 6, 13: 1 4 3 12 9 10| 2 8 6 11 5 7 7, 15: 1 4| 2 8| 7 13|11 14 8, 17: 1 4 16 13| 2 8 15 9| 3 12 14 5| 6 7 11 10 9, 19: 1 4 16 7 9 17 11 6 5| 2 8 13 14 18 15 3 12 10 10, 21: 1 4 16| 2 8 11| 5 20 17|10 19 13 11, 23: 1 4 16 18 3 12 2 8 9 13 6| 2 8 9 13 6 1 4 16 18 3 12 12, 25: 1 4 16 14 6 24 21 9 11 19| 2 8 7 3 12 23 17 18 22 13 13, 27: 1 4 16 10 13 25 19 22 7| 2 8 5 20 26 23 11 17 14 ... n = 14, N = 29: 1 4 16 6 24 9 7 28 25 13 23 5 20 22 | 2 8 3 12 19 18 14 27 21 26 17 10 11 15, n = 15, N = 31: 1 4 16 2 8 | 3 12 17 6 24 | 5 20 18 10 9 | 7 28 19 14 25 | 11 13 21 22 26 | 15 29 23 30 27. ...
Comments