This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339050 #6 Jan 22 2021 22:46:05 %S A339050 1,2,3,3,5,8,4,7,13,21,5,9,18,34,55,6,11,23,47,89,144,7,13,28,60,123, %T A339050 233,377,8,15,33,73,157,322,610,987,9,17,38,86,191,411,843,1597,2584, %U A339050 10,19,43,99,225,500,1076,2207,4181,6765 %N A339050 Triangle read by rows T(n, m) = F(2*m-1)*(n-m) + F(2*m), for 1 <= m <= n, where F = A000045 (Fibonacci). %C A339050 This is the partial sum triangle of triangle A143929. %C A339050 The main diagonal is the INVERT transform of the first column (offset 1 in both sequences). %F A339050 T(n, m) = Sum_{k=1..m} A143929(n, k), n >=1, m = 1, 2, ..., n, otherwise 0. %F A339050 T(n, m) = A(m)*n + B(m), with A(m) = A(m-1) + F(2*(m-1)), for m >= 2 and A(1) = 1, and B(m) = B(m-1) + (m-1)*F(2*(m-1)), for m >= 2 and B(1) = 0, where F(2*m) =A001906(m) and F(2*m-1) = A001519(m). %F A339050 T(n, 1) = n, for n >= 1; T(n, m) = F(2*(m-1))*(n-m+1), if m >= 2 and n >= m, and 0 otherwise. %F A339050 G.f. of column m: G(m,x) = x^m*(x*F(2*m-1)/(1-x)^2 + F(2*m)/(1-x)), for m >= 1. %F A339050 G.f. of row polynomials R(n, x) := Sum{m=1..n} T(n, m)*x^m, that is g.f. of the triangle: G(z,x) = (x*z)*(1 - x*z^2)/((1- 3*x*z + (x*z)^2)*(1 - z)^2). %F A339050 G.f. of (sub)diagonal k: D(k,x) = x*((k-1)*(1-x) + 1)/(1 - 3*x + x^2), for k >= 1. %e A339050 The triangle T(n, m) begins: %e A339050 n\m 1 2 3 4 5 6 7 8 9 10 ... %e A339050 1: 1 %e A339050 2: 2 3 %e A339050 3: 3 5 8 %e A339050 4: 4 7 13 21 %e A339050 5: 5 9 18 34 55 %e A339050 6: 6 11 23 47 89 144 %e A339050 7: 7 13 28 60 123 233 377 %e A339050 8: 8 15 33 73 157 322 610 987 %e A339050 9: 9 17 38 86 191 411 843 1597 2584 %e A339050 10: 10 19 43 99 225 500 1076 2207 4181 6765 %e A339050 ... %Y A339050 Cf. A000045, A001519, A001906, A143929. %Y A339050 The first columns (without leading zeros) are A001477(n), A005408(n+1), A005408(n+1), for n >= 1. %Y A339050 The first (sub)diagonals are A001906(m), A001519(m+1), A005248(m), for m >= 1. %K A339050 nonn,tabl,easy %O A339050 1,2 %A A339050 _Gary W. Adamson_ and _Wolfdieter Lang_, Jan 15 2021