This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339058 #17 Mar 16 2022 02:49:37 %S A339058 1,-2,-3,44,57,-722,-2763,196888,250737,-5746082,-36581523,2049374444, %T A339058 7828053417,-259141449842,-2309644635483,705775346640176, %U A339058 898621108880097,-38901437271432002,-445777636063460643,43136210244502819244,274613643571568682777,-14685255919931552812562 %N A339058 a(n) = 4^n*Euler(n, 1/4)*2^(valuation_{2}(n + 1)). %H A339058 Michael De Vlieger, <a href="/A339058/b339058.txt">Table of n, a(n) for n = 0..432</a> %e A339058 The array of the general case starts: %e A339058 [k] %e A339058 [1] 1, 1, 0, -1, 0, 1, 0, -17, 0, ... [A198631] %e A339058 [2] 1, 0, -1, 0, 5, 0, -61, 0, 1385, ... [A122045] %e A339058 [3] 1, -1, -2, 13, 22, -121, -602, 18581, 30742, ... [A156179] %e A339058 [4] 1, -2, -3, 44, 57, -722, -2763, 196888, 250737, ... [this sequence] %e A339058 [5] 1, -3, -4, 99, 116, -2523, -8764, 1074243, 1242356, ... [A156182] %e A339058 ... %p A339058 a := n -> 4^n*euler(n, 1/4)*2^padic[ordp](n+1, 2): seq(a(n), n=0..9); %t A339058 Array[4^#*EulerE[#, 1/4]*2^IntegerExponent[# + 1, 2] &, 22, 0] (* _Michael De Vlieger_, Mar 15 2022 *) %o A339058 (SageMath) %o A339058 def euler_sum(n): %o A339058 return (-1)^n*sum(2^k*binomial(n, k)*euler_number(k) for k in (0..n)) %o A339058 def a(n): return euler_sum(n) << valuation(n + 1, 2) %o A339058 print([a(n) for n in range(22)]) %Y A339058 Cf. A198631, A122045, A156179, A156182, A156191, A339057. %Y A339058 Note the difference from A001586, A188458, and A212435. %K A339058 sign %O A339058 0,2 %A A339058 _Peter Luschny_, Nov 27 2020