This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339061 #29 Dec 15 2022 14:24:39 %S A339061 1,3,7,20,52,144,389,1058,2876,7817,21250,57763,157017,426817,1160207, %T A339061 3153770,8572836,23303385,63345169,172190019,468061001,1272321714, %U A339061 3458528995,9401256521,25555264765,69466411833,188829284972,513291214021 %N A339061 Least integer j such that H(k+j)>=n+1, where k is the least integer to satisfy H(k)>=n, and H(k) is the sum of the first k terms of the harmonic series. %F A339061 a(n) ~ (e-1)*e^(n-gamma), where e is Euler's number and gamma is the Euler-Mascheroni constant. %F A339061 Conjecture: a(n) = floor(1/2 + e^(n-gamma+1)) - floor(1/2 + e^(n-gamma)) for n > 1 where e is Euler's number and gamma is the Euler-Mascheroni constant. - _Adam Hugill_, Nov 06 2022 %e A339061 Define H(0)=0, H(k) = Sum_{i=1..k} 1/i for k=1,2,3,... %e A339061 a(0)=1: To reach n+1 from n=0 requires 1 additional term of the harmonic partial sum: H(0+1) = H(0) + 1/1 = H(1) = 1. %e A339061 a(1)=3: To reach n+1 from n=1 requires 3 additional terms of the harmonic partial sum: H(1+3) = H(1) + 1/(1+1) + 1/(1+2) + 1/(1+3) = H(4) = 2.08333.... %e A339061 a(2)=7: To reach n+1 from n=2 requires 7 additional terms of the harmonic partial sum: H(4+7) = H(4) + 1/(4+1) + 1/(4+2) + ... + 1/(4+6) + 1/(4+7) = H(11) = 3.01987.... %e A339061 a(3)=20: To reach n+1 from n=3 requires 20 additional terms of the harmonic partial sum: H(11+20) = H(11) + 1/(11+1) + 1/(11+2) + ... + 1/(11+19) + 1/(11+20) = H(31) = 4.02724.... %o A339061 (R) %o A339061 #set size of search space %o A339061 Max=10000000 %o A339061 #initialize sequence to empty %o A339061 seq=vector(length=0) %o A339061 #initialize partial sum to 0 %o A339061 partialsum=0 %o A339061 k=1 %o A339061 n=1 %o A339061 for(i in 1:Max){ %o A339061 partialsum=partialsum+1/i %o A339061 if(partialsum>=n){ %o A339061 seq=c(seq, k) %o A339061 k=0 %o A339061 n=n+1 %o A339061 } %o A339061 k=k+1 %o A339061 } %o A339061 #print sequence numbers below Max %o A339061 seq %Y A339061 First differences of A004080. %Y A339061 Cf. A001113 (e), A001620 (gamma). %Y A339061 Cf. A001008/A002805 (harmonic numbers). %Y A339061 Some sequences in the same spirit as this: A331028, A002387, A004080. %K A339061 nonn %O A339061 0,2 %A A339061 _Matthew J. Bloomfield_, Dec 21 2020