This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339067 #24 Oct 07 2022 05:27:49 %S A339067 1,1,1,2,2,1,4,5,3,1,9,12,9,4,1,20,30,25,14,5,1,48,74,69,44,20,6,1, %T A339067 115,188,186,133,70,27,7,1,286,478,503,388,230,104,35,8,1,719,1235, %U A339067 1353,1116,721,369,147,44,9,1,1842,3214,3651,3168,2200,1236,560,200,54,10,1 %N A339067 Triangle read by rows: T(n,k) is the number of linear forests with n nodes and k rooted trees. %C A339067 T(n,k) is the number of trees with n nodes rooted at two noninterchangeable nodes at a distance k-1 from each other. %C A339067 Also the convolution triangle of A000081. - _Peter Luschny_, Oct 07 2022 %H A339067 Alois P. Heinz, <a href="/A339067/b339067.txt">Rows n = 1..200, flattened</a> %F A339067 G.f. of k-th column: t(x)^k where t(x) is the g.f. of A000081. %F A339067 Sum_{k=1..n} k * T(n,k) = A038002(n). - _Alois P. Heinz_, Dec 04 2020 %e A339067 Triangle begins: %e A339067 1; %e A339067 1, 1; %e A339067 2, 2, 1; %e A339067 4, 5, 3, 1; %e A339067 9, 12, 9, 4, 1; %e A339067 20, 30, 25, 14, 5, 1; %e A339067 48, 74, 69, 44, 20, 6, 1; %e A339067 115, 188, 186, 133, 70, 27, 7, 1; %e A339067 286, 478, 503, 388, 230, 104, 35, 8, 1; %e A339067 719, 1235, 1353, 1116, 721, 369, 147, 44, 9, 1; %e A339067 ... %p A339067 b:= proc(n) option remember; `if`(n<2, n, (add(add(d*b(d), %p A339067 d=numtheory[divisors](j))*b(n-j), j=1..n-1))/(n-1)) %p A339067 end: %p A339067 T:= proc(n, k) option remember; `if`(k=1, b(n), (t-> %p A339067 add(T(j, t)*T(n-j, k-t), j=1..n-1))(iquo(k, 2))) %p A339067 end: %p A339067 seq(seq(T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Dec 04 2020 %p A339067 # Using function PMatrix from A357368. Adds row and column for n, k = 0. %p A339067 PMatrix(10, A000081); # _Peter Luschny_, Oct 07 2022 %t A339067 b[n_] := b[n] = If[n < 2, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}])/(n - 1)]; %t A339067 T[n_, k_] := T[n, k] = If[k == 1, b[n], With[{t = Quotient[k, 2]}, Sum[T[j, t]*T[n - j, k - t], {j, 1, n - 1}]]]; %t A339067 Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Jan 03 2021, after _Alois P. Heinz_ *) %o A339067 (PARI) \\ TreeGf is A000081. %o A339067 TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)} %o A339067 ColSeq(n,k)={my(t=TreeGf(max(0,n+1-k))); Vec(t^k, -n)} %o A339067 M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~)) %o A339067 { my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) } %Y A339067 Columns 1..6 are A000081, A000106, A000242, A000300, A000343, A000395. %Y A339067 Row sums are A000107. %Y A339067 T(2n-1,n) gives A339440. %Y A339067 Cf. A033185, A038002, A217781, A339428. %K A339067 nonn,tabl %O A339067 1,4 %A A339067 _Andrew Howroyd_, Dec 03 2020