This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339074 #15 Feb 16 2025 08:34:01 %S A339074 312,1531,7298,35205,174268,885719,4601982,24306577,129851384, %T A339074 698930787,3780126106,20505863069,111441343860,606312668335, %U A339074 3300926292470,17978225967081,97939845566896,533619551723963,2907629293865874,15844069824657013,86338863686763692,470492593924667271 %N A339074 Number of (undirected) cycles in the graph C_3 X C_n. %H A339074 Seiichi Manyama, <a href="/A339074/b339074.txt">Table of n, a(n) for n = 3..500</a> %H A339074 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a> %H A339074 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TorusGridGraph.html">Torus Grid Graph</a> %o A339074 (Python) %o A339074 # Using graphillion %o A339074 from graphillion import GraphSet %o A339074 def make_CnXCk(n, k): %o A339074 grids = [] %o A339074 for i in range(1, k + 1): %o A339074 for j in range(1, n): %o A339074 grids.append((i + (j - 1) * k, i + j * k)) %o A339074 grids.append((i + (n - 1) * k, i)) %o A339074 for i in range(1, k * n, k): %o A339074 for j in range(1, k): %o A339074 grids.append((i + j - 1, i + j)) %o A339074 grids.append((i + k - 1, i)) %o A339074 return grids %o A339074 def A339074(n): %o A339074 universe = make_CnXCk(n, 3) %o A339074 GraphSet.set_universe(universe) %o A339074 cycles = GraphSet.cycles() %o A339074 return cycles.len() %o A339074 print([A339074(n) for n in range(3, 30)]) %Y A339074 Cf. A194952, A296527, A339075. %K A339074 nonn %O A339074 3,1 %A A339074 _Seiichi Manyama_, Nov 22 2020