cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339084 Smaller term p1 of the first of two consecutive cousin prime pairs (p1,p1+4) and (p2,p2+4) such that the distance (p2-p1) is a square.

This page as a plain text file.
%I A339084 #11 Dec 12 2020 22:05:26
%S A339084 3,127,313,1447,2203,2437,2797,3217,4933,5653,6007,7207,7537,7603,
%T A339084 7753,8233,10627,11827,12373,20353,22027,22153,23017,23563,25303,
%U A339084 27697,27763,29023,29059,29383,31477,32323,32533,32569,32839,33199,33577,35533,36523,37273,41077
%N A339084 Smaller term p1 of the first of two consecutive cousin prime pairs (p1,p1+4) and (p2,p2+4) such that the distance (p2-p1) is a square.
%C A339084 Considering the 10^6 cousin prime pairs from (3,7) to (252115609,252115613), we note the following:
%C A339084 43617 sequence terms (4.4%) are linked to a distance between two consecutive cousin prime pairs which is a square.
%C A339084 List of the 9 classes of distances which are squares: 4,36,144,324,576,900,1296,1764,2304.
%C A339084 The distance 36 occurs with the highest frequency.
%C A339084 Distances linked to the first 50 terms of the sequence: 4,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,36,324,144,36,36,36,144,144,144,36,36,36,36,36,36,36,36,144,36,144,36,36,36
%C A339084 From the class 36, the frequency of the distances decreases when their size increases; the distance 4 linked to the first term of the sequence occurs only once.
%C A339084 See for comparison the sequence A338812.
%e A339084 a(3)=313 is in the sequence because the two consecutive cousin prime pairs being (313,317) and (349,353), the distance between them is 349-313=36 which is a square (6^2).
%e A339084 613 is not in the sequence because the two consecutive cousin prime pairs being (613,617) and (643,647), the distance between them is (643-613)=30 which is not a square.
%o A339084 (R)
%o A339084 Mat<-matrix(0,14000000,5)
%o A339084 primes<-generate_n_primes(14000000)
%o A339084 Mat[,1]<-c(primes)
%o A339084 a_n<-c()
%o A339084 Squares<-c()
%o A339084 Squares_sq<-c()
%o A339084 j=1
%o A339084 counter=0
%o A339084 while(j<=13999999){
%o A339084   if(is_prime((Mat[j,1])+4) & is_prime((Mat[j+1,1]))+4){
%o A339084     counter=counter+1
%o A339084     Mat[counter,2]<-(Mat[j,1])
%o A339084     Mat[counter,3]<-Mat[j,1]+4
%o A339084     Mat[counter+1,2]<-(Mat[j+1,1])
%o A339084     Mat[counter+1,3]<-Mat[j+1,1]+4
%o A339084   }
%o A339084   j=j+1
%o A339084 }
%o A339084 k=1
%o A339084 while(k<=1000000){
%o A339084   dist<- Mat[k+1,2]-Mat[k,2]
%o A339084   Mat[k,4]<-dist
%o A339084   if(sqrt(dist)%%1==0){
%o A339084     Mat[k,5]<-dist
%o A339084     a_n<-append(a_n,Mat[k,2])
%o A339084   }
%o A339084   k=k+1
%o A339084 }
%o A339084 View(Mat)
%o A339084 View(a_n)
%o A339084 (PARI) lista(nn) = {my(last=3, p=7); forprime(q=11, nn, if(q-p==4, if (issquare(p-last), print1(last, ", ")); last = p;); p = q;);} \\ _Michel Marcus_, Nov 23 2020
%Y A339084 Cf. A023200, A046132, A094343.
%Y A339084 Cf. A000290, A053320.
%Y A339084 Cf. A176130, A161002, A161533, A161534, A138198, A338812.
%K A339084 nonn,easy
%O A339084 1,1
%A A339084 _Claude H. R. Dequatre_, Nov 23 2020