This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339095 #61 Nov 27 2020 04:00:07 %S A339095 1,1,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,2,0,2,1,1,1,1,2,1,2,1,2,1, %T A339095 1,0,2,1,1,1,2,1,2,1,3,1,1,0,3,0,0,1,3,0,1,1,1,1,2,1,2,1,3,2,1,0,3,0, %U A339095 1,1,3,0,2,0,2,0,0,0,2,0,0,1 %N A339095 Triangle read by rows: T(n,k) is the number of partitions of n with product of parts equal to k, 1 <= k <= A000792(n). %C A339095 The product of the parts of a partition is called its norm. %D A339095 Abhimanyu Kumar and Meenakshi Rana, On the treatment of partitions as factorization and further analysis, Journal of the Ramanujan Mathematical Society 35(3), 263-276 (2020). %H A339095 Andrew V. Sills and Robert Schneider, <a href="https://arxiv.org/abs/1904.08004">The product of parts or "norm" of a partition</a>, arXiv:1904.08004 [math.NT], 2019. %F A339095 Let the number of partitions of n having the norm value k refer to the norm counting function T(n,k). The following properties hold true: %F A339095 Max_{n=1..oo} T(n,k) = A001055(k). %F A339095 Sum_{k=1..A000792(n)} T(n,k) = A000041(n). %F A339095 Sum_{n>=1} T(n+1,k) - T(n,k) = A001055(k) - 1. %F A339095 G.f.: Sum_{n>=0} Sum_{k>=1} ((q^n)/(k^s))*T(n,k) = Product_{m>=1}(1-((q^m)/(m^s)))^(-1). %F A339095 n*Sum_{k=1..A000792(n)} T(n,k) = Sum_{m=1..n} (Sum_{k=1..A000792(n-m)} T(n-m,i)*k^(-s))*(Sum_{d|m} (d/m)^(d*s-1)) %e A339095 For n=6 the partitions and their counts for each norm are given in the table below. %e A339095 Relevant partition(s) | Norm | Count %e A339095 1+1+1+1+1+1+1 | 1 | 1 %e A339095 2+1+1+1+1 | 2 | 1 %e A339095 3+1+1+1 | 3 | 1 %e A339095 4+1+1, 2+2+1+1 | 4 | 2 %e A339095 5+1 | 5 | 1 %e A339095 6, 3+2+1 | 6 | 2 %e A339095 4+2, 2+2+2 | 8 | 2 %e A339095 3+3 | 9 | 1 %e A339095 The number of partitions of 6 with norm value 4 are 2, expressed as T(6,4)=2. Similarly, T(6,7)=0 because there is no partition of 6 with norm 7. %e A339095 So the 6th row is 1, 1, 1, 2, 1, 2, 0, 2, 1. %e A339095 First few rows of the array are: %e A339095 1; %e A339095 1, 1; %e A339095 1, 1, 1; %e A339095 1, 1, 1, 2; %e A339095 1, 1, 1, 2, 1, 1; %e A339095 1, 1, 1, 2, 1, 2, 0, 2, 1; %e A339095 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 2; %e A339095 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 0, 3, 0, 0, 1, 3, 0, 1; %e A339095 ... %o A339095 (PARI) row(n) = {my(list = List()); forpart(p=n, listput(list, vecprod(Vec(p)));); my(vlist = Vec(list)); my(v = vector(vecmax(vlist))); for (i=1, #vlist, v[vlist[i]]++); v;} \\ _Michel Marcus_, Nov 26 2020 %Y A339095 Cf. A000041 (row sums), A000792 (row lengths), A001055, A118851, A212721. %K A339095 nonn,tabf %O A339095 1,10 %A A339095 _Abhimanyu Kumar_, Nov 23 2020 %E A339095 More terms from _Michel Marcus_, Nov 26 2020