This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339098 #24 Feb 16 2025 08:34:01 %S A339098 7,30,30,85,348,85,204,3459,3459,204,451,33145,136597,33145,451,954, %T A339098 316164,4847163,4847163,316164,954,1969,3013590,171903334,545217435, %U A339098 171903334,3013590,1969,4008,28722567,6109759868,61575093671,61575093671,6109759868,28722567,4008 %N A339098 Square array T(n,k), n >= 2, k >= 2, read by antidiagonals, where T(n,k) is the number of (undirected) cycles on the n X k king graph. %H A339098 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a> %H A339098 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %F A339098 T(n,k) = T(k,n). %e A339098 Square array T(n,k) begins: %e A339098 7, 30, 85, 204, 451, ... %e A339098 30, 348, 3459, 33145, 316164, ... %e A339098 85, 3459, 136597, 4847163, 171903334, ... %e A339098 204, 33145, 4847163, 545217435, 61575093671, ... %e A339098 451, 316164, 171903334, 61575093671, 21964731190911, ... %o A339098 (Python) %o A339098 # Using graphillion %o A339098 from graphillion import GraphSet %o A339098 def make_nXk_king_graph(n, k): %o A339098 grids = [] %o A339098 for i in range(1, k + 1): %o A339098 for j in range(1, n): %o A339098 grids.append((i + (j - 1) * k, i + j * k)) %o A339098 if i < k: %o A339098 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A339098 if i > 1: %o A339098 grids.append((i + (j - 1) * k, i + j * k - 1)) %o A339098 for i in range(1, k * n, k): %o A339098 for j in range(1, k): %o A339098 grids.append((i + j - 1, i + j)) %o A339098 return grids %o A339098 def A339098(n, k): %o A339098 universe = make_nXk_king_graph(n, k) %o A339098 GraphSet.set_universe(universe) %o A339098 cycles = GraphSet.cycles() %o A339098 return cycles.len() %o A339098 print([A339098(j + 2, i - j + 2) for i in range(9 - 1) for j in range(i + 1)]) %Y A339098 Rows and columns 2..5 give A339196, A339197, A339198, A339199. %Y A339098 Main diagonal gives A234622. %Y A339098 Cf. A231829, A339190. %K A339098 nonn,tabl %O A339098 2,1 %A A339098 _Seiichi Manyama_, Nov 27 2020