This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339100 #16 Dec 14 2021 00:32:12 %S A339100 1,6,1,60,1,42,1,120,1,66,1,5460,1,6,1,4080,1,798,1,3300,1,138,1, %T A339100 10920,1,6,1,1740,1,14322,1,8160,1,6,1,3838380,1,6,1,270600,1,12642,1, %U A339100 1380,1,282,1,371280,1,66,1,3180,1,798,1,3480,1,354,1,567867300 %N A339100 a(n) = GCD({(2*n-k)*T(n,k)+(k+1)*T(n,k+1), k=0..n}), where T(n,k) stands for A214406 (the second-order Eulerian numbers of type B). %C A339100 Define recursively the rational fractions R_n by: R_0(x)=1; R_{n+1}(x) = (R_n(x)*x/(1-x^2))'. 2*a(n) is the maximal integer that can be factored out of the numerator of R'_n -- staying with polynomials with integer coefficients. %C A339100 Empirical observations: the prime factorizations of the a(n) follow a pattern: the 2-adic valuation of a(n) is the 2-adic valuation of n; the 3-adic valuation of a(n) is (n mod 2); for p a prime >= 5, the p-adic valuation of a(n) is 0 (if p-1 does not divide n), 1 (if p-1 divides n but p does not) or 2 (if both p-1 and p divide n). So, a(n) = 1 when n is odd, and the prime factorizations of a(n) for the first few even n are: %C A339100 \ p| %C A339100 \ | 2 3 5 7 11 13 17 19 23 29 31 37 41 43 %C A339100 n \| %C A339100 ---+------------------------------------------- %C A339100 2 | 1 1 . . . . . . . . . . . . %C A339100 4 | 2 1 1 . . . . . . . . . . . %C A339100 6 | 1 1 . 1 . . . . . . . . . . %C A339100 8 | 3 1 1 . . . . . . . . . . . %C A339100 10 | 1 1 . . 1 . . . . . . . . . %C A339100 12 | 2 1 1 1 . 1 . . . . . . . . %C A339100 14 | 1 1 . . . . . . . . . . . . %C A339100 16 | 4 1 1 . . . 1 . . . . . . . %C A339100 18 | 1 1 . 1 . . . 1 . . . . . . %C A339100 20 | 2 1 2 . 1 . . . . . . . . . %C A339100 22 | 1 1 . . . . . . 1 . . . . . %C A339100 24 | 3 1 1 1 . 1 . . . . . . . . %C A339100 26 | 1 1 . . . . . . . . . . . . %C A339100 28 | 2 1 1 . . . . . . 1 . . . . %C A339100 30 | 1 1 . 1 1 . . . . . 1 . . . %C A339100 32 | 5 1 1 . . . 1 . . . . . . . %C A339100 34 | 1 1 . . . . . . . . . . . . %C A339100 36 | 2 1 1 1 . 1 . 1 . . . 1 . . %C A339100 38 | 1 1 . . . . . . . . . . . . %C A339100 40 | 3 1 2 . 1 . . . . . . . 1 . %C A339100 42 | 1 1 . 2 . . . . . . . . . 1 %H A339100 Antti Karttunen, <a href="/A339100/b339100.txt">Table of n, a(n) for n = 1..1201</a> %e A339100 In A214406, row number 4 is: %e A339100 (k=0) (k=1) (k=2) (k=3) (k=4) %e A339100 1 112 718 744 105 %e A339100 Now, %e A339100 (2*4-0)* 1 + (0+1)*112 = 120 %e A339100 (2*4-1)*112 + (1+1)*718 = 2220 %e A339100 (2*4-2)*718 + (2+1)*744 = 6540 %e A339100 (2*4-3)*744 + (3+1)*105 = 4140 %e A339100 (2*4-4)*105 + (4+1)* 0 = 420 %e A339100 The GCD of {120, 2220, 6540, 4140, 420} is 60, so a(4)=60. %t A339100 T[n_,k_]:=T[n,k]=If[n==0&&k==0,1,If[n==0||k<0||k>n,0,(4*n-2*k-1)*T[n-1,k-1]+(2*k+1)*T[n-1,k]]] %t A339100 A[n_]:=Table[(2*n-k)*T[n,k]+(k+1)*T[n,k+1],{k,0,n}]/.{List->GCD} %t A339100 Table[A[n],{n,1,100}] %o A339100 (PARI) %o A339100 r(n)=if(n==0,1,(r(n-1)*x/(1-x^2))') %o A339100 a(n)=my(p=(r(n))'*(1-x^2)^(2*n+1)/2);p/factorback(factor(p)) %o A339100 for(n=1,60,print1(a(n),", ")) %Y A339100 Cf. A214406, A165886. %K A339100 nonn %O A339100 1,2 %A A339100 _Luc Rousseau_, Nov 23 2020