This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339109 #6 Nov 23 2020 21:50:24 %S A339109 1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,3,3,5,5,7,7,9,9,11,11,19,19,27,33, %T A339109 41,47,61,67,81,93,107,143,163,199,243,309,353,443,517,631,729,873, %U A339109 995,1307,1459,1795,2115,2625,3089,3767,4405,5371,6297,7557,8771,10463,12811,14911 %N A339109 Number of compositions (ordered partitions) of n into distinct parts >= 8. %H A339109 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A339109 G.f.: Sum_{k>=0} k! * x^(k*(k + 15)/2) / Product_{j=1..k} (1 - x^j). %e A339109 a(17) = 3 because we have [17], [9, 8] and [8, 9]. %p A339109 b:= proc(n, i, p) option remember; %p A339109 `if`(n=0, p!, `if`((i-7)*(i+8)/2<n, 0, %p A339109 add(b(n-i*j, i-1, p+j), j=0..min(1, n/i)))) %p A339109 end: %p A339109 a:= n-> b(n$2, 0): %p A339109 seq(a(n), n=0..64); # _Alois P. Heinz_, Nov 23 2020 %t A339109 nmax = 64; CoefficientList[Series[Sum[k! x^(k (k + 15)/2)/Product[1 - x^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x] %Y A339109 Cf. A017902, A025153, A032020, A032022, A185328, A339101, A339102, A339103, A339104, A339108, A339110. %K A339109 nonn %O A339109 0,18 %A A339109 _Ilya Gutkovskiy_, Nov 23 2020