A339112 Products of primes of semiprime index (A106349).
1, 7, 13, 23, 29, 43, 47, 49, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 169, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 343, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 529, 553, 559, 577, 607, 611, 631, 637, 647
Offset: 1
Keywords
Examples
The sequence of terms together with the corresponding multigraphs begins (A..F = 10..15): 1: 149: (34) 313: (36) 7: (11) 161: (11)(22) 329: (11)(23) 13: (12) 163: (18) 343: (11)(11)(11) 23: (22) 167: (26) 347: (29) 29: (13) 169: (12)(12) 373: (1C) 43: (14) 199: (19) 377: (12)(13) 47: (23) 203: (11)(13) 389: (45) 49: (11)(11) 227: (44) 421: (1D) 73: (24) 233: (27) 439: (37) 79: (15) 257: (35) 443: (1E) 91: (11)(12) 269: (28) 449: (2A) 97: (33) 271: (1A) 467: (46) 101: (16) 293: (1B) 487: (2B) 137: (25) 299: (12)(22) 491: (1F) 139: (17) 301: (11)(14) 499: (38)
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
These primes (of semiprime index) are listed by A106349.
The strict (squarefree) case is A340020.
The prime instead of semiprime version:
primes: A006450
products: A076610
strict: A302590
The nonprime instead of semiprime version:
primes: A007821
products: A320628
odd: A320629
strict: A340104
odd strict: A340105
The squarefree semiprime instead of semiprime version:
strict: A309356
primes: A322551
products: A339113
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes (and 1).
A101048 counts partitions into semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320892 lists even-omega non-products of distinct semiprimes.
Programs
-
Maple
N:= 1000: # for terms up to N SP:= {}: p:= 1: for i from 1 do p:= nextprime(p); if 2*p > N then break fi; Q:= map(t -> p*t, select(isprime, {2,seq(i,i=3..min(p,N/p),2)})); SP:= SP union Q; od: SP:= sort(convert(SP,list)): PSP:= map(ithprime,SP): R:= {1}: for p in PSP do Rp:= {}: for k from 1 while p^k <= N do Rpk:= select(`<=`,R, N/p^k); Rp:= Rp union map(`*`,Rpk, p^k); od; R:= R union Rp; od: sort(convert(R,list)); # Robert Israel, Nov 03 2024
-
Mathematica
semiQ[n_]:=PrimeOmega[n]==2; Select[Range[100],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!semiQ[PrimePi[p]]]&]
Comments