This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339114 #13 Sep 06 2022 10:38:12 %S A339114 4,6,9,14,21,26,34,38,46,58,62,74,82,86,94,106,118,122,134,142,146, %T A339114 158,166,178,194,202,206,214,218,226,254,262,274,278,298,302,314,326, %U A339114 334,346,358,362,382,386,394,398,422,446,454,458,466,478,482,502,514,526 %N A339114 Least semiprime whose prime indices sum to n. %C A339114 Converges to A100484. %C A339114 After a(4) = 9, also the least squarefree semiprime whose prime indices sum to n. %C A339114 A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798. %e A339114 The sequence of terms together with their prime indices begins: %e A339114 4: {1,1} 106: {1,16} 254: {1,31} %e A339114 6: {1,2} 118: {1,17} 262: {1,32} %e A339114 9: {2,2} 122: {1,18} 274: {1,33} %e A339114 14: {1,4} 134: {1,19} 278: {1,34} %e A339114 21: {2,4} 142: {1,20} 298: {1,35} %e A339114 26: {1,6} 146: {1,21} 302: {1,36} %e A339114 34: {1,7} 158: {1,22} 314: {1,37} %e A339114 38: {1,8} 166: {1,23} 326: {1,38} %e A339114 46: {1,9} 178: {1,24} 334: {1,39} %e A339114 58: {1,10} 194: {1,25} 346: {1,40} %e A339114 62: {1,11} 202: {1,26} 358: {1,41} %e A339114 74: {1,12} 206: {1,27} 362: {1,42} %e A339114 82: {1,13} 214: {1,28} 382: {1,43} %e A339114 86: {1,14} 218: {1,29} 386: {1,44} %e A339114 94: {1,15} 226: {1,30} 394: {1,45} %t A339114 Table[Min@@Table[Prime[k]*Prime[n-k],{k,n-1}],{n,2,30}] %t A339114 Take[DeleteDuplicates[SortBy[{Times@@#,Total[PrimePi[#]]}&/@Tuples[ Prime[ Range[ 200]],2],{Last,First}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]],60] (* _Harvey P. Dale_, Sep 06 2022 *) %o A339114 (PARI) a(n) = vecmin(vector(n-1, k, prime(k)*prime(n-k))); \\ _Michel Marcus_, Dec 03 2020 %Y A339114 A024697 is the sum of the same semiprimes. %Y A339114 A098350 has this sequence as antidiagonal minima. %Y A339114 A338904 has this sequence as row minima. %Y A339114 A339114 (this sequence) is the squarefree case for n > 4. %Y A339114 A339115 is the greatest among the same semiprimes. %Y A339114 A001358 lists semiprimes, with odd/even terms A046315/A100484. %Y A339114 A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484. %Y A339114 A037143 lists primes and semiprimes. %Y A339114 A056239 gives the sum of prime indices of n. %Y A339114 A084126 and A084127 give the prime factors of semiprimes. %Y A339114 A087112 groups semiprimes by greater factor. %Y A339114 A320655 counts factorizations into semiprimes. %Y A339114 A332765/A332877 is the greatest squarefree semiprime of weight n. %Y A339114 A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506. %Y A339114 A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900. %Y A339114 A338907/A338906 list semiprimes of odd/even weight. %Y A339114 A338907/A338908 list squarefree semiprimes of odd/even weight. %Y A339114 Cf. A000040, A001221, A001222, A014342, A025129, A062198, A112798, A338905, A339116. %K A339114 nonn %O A339114 2,1 %A A339114 _Gus Wiseman_, Nov 28 2020