A339115 Greatest semiprime whose prime indices sum to n.
4, 6, 10, 15, 25, 35, 55, 77, 121, 143, 187, 221, 289, 323, 391, 493, 551, 667, 841, 899, 1073, 1189, 1369, 1517, 1681, 1763, 1961, 2183, 2419, 2537, 2809, 3127, 3481, 3599, 3953, 4189, 4489, 4757, 5041, 5293, 5723, 5963, 6499, 6887, 7171, 7663, 8051, 8633
Offset: 2
Keywords
Examples
The sequence of terms together with their prime indices begins: 4: {1,1} 493: {7,10} 2809: {16,16} 6: {1,2} 551: {8,10} 3127: {16,17} 10: {1,3} 667: {9,10} 3481: {17,17} 15: {2,3} 841: {10,10} 3599: {17,18} 25: {3,3} 899: {10,11} 3953: {17,19} 35: {3,4} 1073: {10,12} 4189: {17,20} 55: {3,5} 1189: {10,13} 4489: {19,19} 77: {4,5} 1369: {12,12} 4757: {19,20} 121: {5,5} 1517: {12,13} 5041: {20,20} 143: {5,6} 1681: {13,13} 5293: {19,22} 187: {5,7} 1763: {13,14} 5723: {17,25} 221: {6,7} 1961: {12,16} 5963: {19,24} 289: {7,7} 2183: {12,17} 6499: {19,25} 323: {7,8} 2419: {13,17} 6887: {20,25} 391: {7,9} 2537: {14,17} 7171: {20,26}
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Crossrefs
A024697 is the sum of the same semiprimes.
A338904 has this sequence as row maxima.
A339114 is the least among the same semiprimes.
A037143 lists primes and semiprimes.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
Programs
-
Maple
P:= [seq(ithprime(i),i=1..200)]: [seq(max(seq(P[i]*P[j-i],i=1..j-1)),j=2..200)]; # Robert Israel, Dec 06 2020
-
Mathematica
Table[Max@@Table[Prime[k]*Prime[n-k],{k,n-1}],{n,2,30}]
Comments