cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339122 Number of elements of the Rubik's Cube group of order A338883(n).

This page as a plain text file.
%I A339122 #23 Aug 30 2022 14:17:46
%S A339122 1,170911549183,33894540622394,4346957030144256,133528172514624,
%T A339122 140621059298755526,153245517148800,294998638981939200,
%U A339122 55333752398428896,34178553690432192,44590694400,2330232827455554048,23298374383021440,14385471333209856,150731886270873600
%N A339122 Number of elements of the Rubik's Cube group of order A338883(n).
%C A339122 The most common order is 60, with a(33) = 4199961633799421952 elements, or about 9.71% of the group.
%C A339122 The least common order (excluding 1) is 11, with a(11) = 44590694400 elements, or about 0.0000001% of the group. Elements of order 11 are rare because they cannot affect the corner pieces of the cube.
%H A339122 Ben Whitmore, <a href="/A339122/b339122.txt">Table of n, a(n) for n = 1..73</a>
%H A339122 Tomas Rokicki, <a href="https://www.speedsolving.com/threads/average-scramble-loop-length.85241/#post-1451996">SpeedSolving Puzzles Community</a>.
%F A339122 Sum_{n=1..73} a(n) = 43252003274489856000 = A075152(3).
%e A339122 a(1) = 1 because the only element of order A338883(1) = 1 is the identity element.
%e A339122 a(73) = 51490480088678400 is the number of elements of order A338883(73) = 1260.
%t A339122 pN[p_] := Total[p]!/Times@@p/Times@@Factorial[Flatten[Tally[p]][[2 ;; ;; 2]]]
%t A339122 oddQ[p_] := OddQ[Total[p - 1]]
%t A339122 ord[p_] := LCM @@ p
%t A339122 oriN[p_, o_] := Module[{i, t, a = 0, ns = 0, s = 0, r}, t = ord[p]/p;
%t A339122   For[i = 1, i <= Length[p], i++,
%t A339122    If[Mod[t[[i]], o] == 0, a += p[[i]], ns += 1; s += p[[i]]]];
%t A339122      {If[a == 0, r = o^(s - ns), r = o^a o^(s - ns - 1)], o^(a + s - 1) - r}]
%t A339122 val[p1_, o1_, p2_, o2_] :=
%t A339122 Module[{z}, z = pN[p1] pN[p2];
%t A339122      {{LCM[ord[p1], ord[p2]],z oriN[p1, o1][[1]] oriN[p2, o2][[1]]},
%t A339122      {{LCM[ord[p1] o1,ord[p2]],z oriN[p1, o1][[2]] oriN[p2, o2][[1]]}},   {{LCM[ord[p1],ord[p2] o2],z oriN[p1, o1][[1]] oriN[p2, o2][[2]]}},
%t A339122   {{LCM[ord[p1] o1, ord[p2] o2], z oriN[p1, o1][[2]] oriN[p2, o2][[2]] }}}]
%t A339122 p8 = IntegerPartitions[8]; p12 = IntegerPartitions[12];
%t A339122 ce = Select[p8, ! oddQ[#] &]; co = Select[p8, oddQ[#] &];
%t A339122 ee = Select[p12, ! oddQ[#] &]; eo = Select[p12, oddQ[#] &];
%t A339122 res = {}; max = 0;
%t A339122 For[i = 1, i <= Length[ce], i++,
%t A339122 For[j = 1, j <= Length[ee], j++,
%t A339122   AppendTo[res, val[ce[[i]], 3, ee[[j]], 2]]]]
%t A339122 For[i = 1, i <= Length[co], i++,
%t A339122 For[j = 1, j <= Length[eo], j++,
%t A339122   AppendTo[res, val[co[[i]], 3, eo[[j]], 2]]]]
%t A339122 p = Partition[res // Flatten, 2]; c // Clear;
%t A339122 For[i = 1, i <= Length[p], i++,
%t A339122   If [IntegerQ[c[p[[i, 1]]]], c[p[[i, 1]]] += p[[i, 2]],
%t A339122    c[p[[i, 1]]] = p[[i, 2]]]; If[p[[i, 1]] > max, max = p[[i, 1]]]];
%t A339122 Select[Table[c[i], {i, 1, max}], IntegerQ[#] &] (* _Herbert Kociemba_, Jun 30 2022 *)
%o A339122 (Python) # See post #11 in SpeedSolving Puzzles Community link.
%Y A339122 Cf. A057731, A075152, A338883.
%K A339122 nonn,fini,full
%O A339122 1,2
%A A339122 _Ben Whitmore_, Nov 24 2020
%E A339122 a(10) corrected by _Ben Whitmore_, Jun 27 2022