This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339124 #16 Dec 05 2020 04:51:09 %S A339124 1,4,12,28,60,132,300,692,1596,3668,8412,19284,44220,101428,232668, %T A339124 533716,1224252,2808180,6441372,14775188,33891324,77739956,178319964, %U A339124 409030356,938233788,2152120564,4936534044,11323421716,25973664636,59578391604 %N A339124 a(n) is the number of squares at distance n from the central square of a golden square fractal. %C A339124 For symmetry reasons, a(n) is a multiple of 4 for any n > 0. %H A339124 Rémy Sigrist, <a href="/A339124/b339124.txt">Table of n, a(n) for n = 0..999</a> %H A339124 Rémy Sigrist, <a href="/A339124/a339124.png">Illustration of initial terms</a> %H A339124 Wikipedia, <a href="https://en.wikipedia.org/wiki/Golden_ratio#Other_properties">Golden square fractal</a> %H A339124 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,0,2). %F A339124 G.f.: (2*x^4 - 2*x^2 - x - 1)/(2*x^4 - 2*x^2 + 3*x - 1). %F A339124 a(0) = 1. %F A339124 a(n) = A269962(n+1) - A269962(n) for any n > 0. %F A339124 a(n) = 3*a(n-1) - 2*a(n-2) + 2*a(n-4) for n > 4. - _Stefano Spezia_, Dec 02 2020 %Y A339124 See A337018 for similar sequences. %Y A339124 Cf. A269962 (partial sums). %K A339124 nonn,easy %O A339124 0,2 %A A339124 _Rémy Sigrist_, Nov 24 2020