This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339137 #16 Feb 16 2025 08:34:01 %S A339137 1,28,225,1540,10217,67388,444017,2925140,19270105,126946444, %T A339137 836290209,5509263332,36293601737,239092863324,1575081964113, %U A339137 10376232739316,68355938510649,450311249502892,2966534083948417,19542759549039748,128742647137776169,848123272992954492 %N A339137 Number of (undirected) cycles in the graph C_4 X P_n. %H A339137 Seiichi Manyama, <a href="/A339137/b339137.txt">Table of n, a(n) for n = 1..1000</a> %H A339137 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a> %F A339137 Empirical g.f.: -x*(6*x^3+29*x^2-18*x-1) / ((x-1)^2 * (2*x^3+9*x^2-8*x+1)). - _Vaclav Kotesovec_, Dec 09 2020 %o A339137 (Python) %o A339137 # Using graphillion %o A339137 from graphillion import GraphSet %o A339137 def make_CnXPk(n, k): %o A339137 grids = [] %o A339137 for i in range(1, k + 1): %o A339137 for j in range(1, n): %o A339137 grids.append((i + (j - 1) * k, i + j * k)) %o A339137 grids.append((i + (n - 1) * k, i)) %o A339137 for i in range(1, k * n, k): %o A339137 for j in range(1, k): %o A339137 grids.append((i + j - 1, i + j)) %o A339137 return grids %o A339137 def A339137(n): %o A339137 universe = make_CnXPk(4, n) %o A339137 GraphSet.set_universe(universe) %o A339137 cycles = GraphSet.cycles() %o A339137 return cycles.len() %o A339137 print([A339137(n) for n in range(1, 20)]) %Y A339137 Cf. A003699 (Hamiltonian cycles), A288637, A339075, A339136, A339140, A339142, A339143. %K A339137 nonn %O A339137 1,2 %A A339137 _Seiichi Manyama_, Nov 25 2020