This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339140 #21 Feb 16 2025 08:34:01 %S A339140 6,63,1540,119235,29059380,21898886793,50826232189144, %T A339140 361947451544923557,7884768474166076906420, %U A339140 524518303312357729182869149,106448798893410608983300257207398,65866487708413725073741586390176988083,124207126413825808953168887580780401519104028 %N A339140 Number of (undirected) cycles in the graph C_n X P_n. %H A339140 Ed Wynn, <a href="/A339140/b339140.txt">Table of n, a(n) for n = 2..18</a> %H A339140 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a> %e A339140 If we represent each vertex with o, used edges with lines and unused edges with dots, and repeat the wraparound edges on left and right, the a(2) = 6 solutions for n = 2 are: %e A339140 .o-o. -o.o- .o-o. -o.o- -o-o- .o.o. %e A339140 | | | | | | | | . . . . %e A339140 .o-o. .o-o. -o.o- -o.o- .o.o. -o-o- %o A339140 (Python) %o A339140 # Using graphillion %o A339140 from graphillion import GraphSet %o A339140 def make_CnXPk(n, k): %o A339140 grids = [] %o A339140 for i in range(1, k + 1): %o A339140 for j in range(1, n): %o A339140 grids.append((i + (j - 1) * k, i + j * k)) %o A339140 grids.append((i + (n - 1) * k, i)) %o A339140 for i in range(1, k * n, k): %o A339140 for j in range(1, k): %o A339140 grids.append((i + j - 1, i + j)) %o A339140 return grids %o A339140 def A339140(n): %o A339140 universe = make_CnXPk(n, n) %o A339140 GraphSet.set_universe(universe) %o A339140 cycles = GraphSet.cycles() %o A339140 return cycles.len() %o A339140 print([A339140(n) for n in range(3, 7)]) %Y A339140 Cf. A140517, A222197, A296527, A339136, A339137, A339142, A339143. %K A339140 nonn %O A339140 2,1 %A A339140 _Seiichi Manyama_, Nov 25 2020 %E A339140 a(10) and a(12) from _Seiichi Manyama_, Nov 25 2020 %E A339140 a(2), a(9), a(11) and a(13)-a(18) from _Ed Wynn_, Jun 25 2023