This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339157 #8 Nov 28 2020 19:54:46 %S A339157 1,1,1,3,4,11,17,46,78,203,372,946,1830,4561,9207,22609,47166,114514, %T A339157 245154,590345,1289950,3087959,6858746,16352074,36800928,87502317, %U A339157 199036637,472483088,1084108363,2571356964,5942191918,14090541799,32754720101,77684033014,181473276607 %N A339157 Number of essentially series achiral series-parallel networks with n elements. %C A339157 A series configuration is the unit element or an ordered concatenation of two or more parallel configurations and a parallel configuration is the unit element or a multiset of two or more series configurations. a(n) is the number of series configurations with n unit elements that are invariant under the reversal of all contained series configurations. %F A339157 G.f.: x + (1 + P(x))*B(x^2) where P(x) is the g.f. of A339158 and B(x) is the g.f. of A003430. %e A339157 In the following examples of series-parallel networks, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element is denoted by 'o'. %e A339157 a(1) = 1: (o). %e A339157 a(2) = 1: (oo). %e A339157 a(3) = 1: (ooo). %e A339157 a(4) = 3: (oooo), ((o|o)(o|o)), (o(o|o)o). %e A339157 a(5) = 4: (ooooo), ((o|o)o(o|o)), (o(o|oo)o), (o(o|o|o)o). %e A339157 a(6) = 11: (oooooo), ((o|o)oo(o|o)), (o(o|o)(o|o)o), ((o|oo)(o|oo)), ((o|o|o)(o|o|o)), (oo(o|o)oo), ((o|o)(o|o)(o|o)), (o(o|ooo)o), (o(oo|oo)o), (o(o|o|oo)o), (o(o|o|o|o)o). %o A339157 (PARI) \\ here B(n) gives A003430 as a power series. %o A339157 EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} %o A339157 B(n)={my(p=x+O(x^2)); for(n=2, n, p=x*Ser(EulerT(Vec(p^2/(1+p)+x)))); p} %o A339157 seq(n)={my(q=subst(B((n+1)\2), x, x^2), s=x^2+q^2/(1+q), p=x+O(x^2)); for(n=1, n\2, p = x + q*(1 + x + x*Ser(EulerT(Vec(p+(s-subst(p,x,x^2))/2))) - p)); Vec(p+O(x*x^n))} %Y A339157 Cf. A003430, A007453 (oriented), A339158, A339159, A339223 (unoriented). %K A339157 nonn %O A339157 1,4 %A A339157 _Andrew Howroyd_, Nov 27 2020