This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339163 #6 Nov 25 2020 21:28:20 %S A339163 0,0,1,0,0,2,2,2,2,8,8,14,14,20,44,50,74,104,128,158,326,356,524,698, %T A339163 986,1160,1592,2606,3158,4316,5708,7706,10082,12920,16136,25718,30614, %U A339163 41756,53396,71978,91058,122144,149384,193670,279614,342860,447764,581234 %N A339163 Number of compositions (ordered partitions) of n into distinct parts, the least being 2. %H A339163 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A339163 G.f.: Sum_{k>=1} k! * x^(k*(k + 3)/2) / Product_{j=1..k-1} (1 - x^j). %e A339163 a(9) = 8 because we have [7, 2], [4, 3, 2], [4, 2, 3], [3, 4, 2], [3, 2, 4], [2, 7], [2, 4, 3] and [2, 3, 4]. %p A339163 b:= proc(n, i, p) option remember; %p A339163 `if`(n=0, p!, `if`((i-2)*(i+3)/2<n, 0, %p A339163 add(b(n-i*j, i-1, p+j), j=0..min(1, n/i)))) %p A339163 end: %p A339163 a:= n-> `if`(n<2, 0, b(n-2$2, 1)): %p A339163 seq(a(n), n=0..55); # _Alois P. Heinz_, Nov 25 2020 %t A339163 nmax = 47; CoefficientList[Series[Sum[k! x^(k (k + 3)/2)/Product[1 - x^j, {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x] %Y A339163 Cf. A002865, A032022, A096749, A339162, A339164, A339165, A339166. %K A339163 nonn %O A339163 0,6 %A A339163 _Ilya Gutkovskiy_, Nov 25 2020