This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339166 #5 Nov 25 2020 20:20:25 %S A339166 0,0,0,0,0,1,0,0,0,0,0,2,2,2,2,2,2,2,8,8,14,14,20,20,26,26,56,56,86, %T A339166 110,140,164,218,242,296,464,518,686,884,1172,1370,1802,2120,2672, %U A339166 3134,4526,5108,6764,8186,10682,13088,16544,19790,24950,29876,36716 %N A339166 Number of compositions (ordered partitions) of n into distinct parts, the least being 5. %H A339166 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A339166 G.f.: Sum_{k>=1} k! * x^(k*(k + 9)/2) / Product_{j=1..k-1} (1 - x^j). %e A339166 a(18) = 8 because we have [13, 5], [7, 6, 5], [7, 5, 6], [6, 7, 5], [6, 5, 7], [5, 13], [5, 7, 6] and [5, 6, 7]. %p A339166 b:= proc(n, i, p) option remember; %p A339166 `if`(n=0, p!, `if`((i-5)*(i+6)/2<n, 0, %p A339166 add(b(n-i*j, i-1, p+j), j=0..min(1, n/i)))) %p A339166 end: %p A339166 a:= n-> `if`(n<5, 0, b(n-5$2, 1)): %p A339166 seq(a(n), n=0..60); # _Alois P. Heinz_, Nov 25 2020 %t A339166 nmax = 55; CoefficientList[Series[Sum[k! x^(k (k + 9)/2)/Product[1 - x^j, {j, 1, k - 1}], {k, 1, nmax}], {x, 0, nmax}], x] %Y A339166 Cf. A026798, A026826, A339103, A339162, A339163, A339164, A339165. %K A339166 nonn %O A339166 0,12 %A A339166 _Ilya Gutkovskiy_, Nov 25 2020