This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339185 #12 Nov 29 2020 21:57:04 %S A339185 2,0,137,5,41,109,4253,569,23057,821,405863,9013,1049173,73009, %T A339185 9742969,188017,382355863,236527,3198295691,1843111,21640201361, %U A339185 7600499,376724314301,33177461,1974496270177,305216017,85571500507397,148597987,145412255489161,951267841,2609815945304401,1140850357,24575914221842531 %N A339185 a(n) is the least prime p such that the sum of n consecutive primes starting with p has exactly n prime factors, counted with multiplicity, or 0 if no such p exists. %C A339185 Conjecture: Such p exists for every n > 2. %F A339185 A339269(n) = A143121(a(n)+n, a(n)). %e A339185 a(3)=137 because the sum of 3 consecutive primes starting with 137 is 137+139+149=425=5^2*7 is the product of 3 primes counting multiplicity, and 137 is the least prime with this property. %p A339185 sumofconsecprimes:= proc(x,n) %p A339185 local P,k,p,q,t; %p A339185 P:= nextprime(floor(x/n)); %p A339185 p:= P; q:= P; %p A339185 for k from 1 to n-1 do %p A339185 if k::even or q = 2 then p:= nextprime(p); P:= P,p; %p A339185 else q:= prevprime(q); P:= q,P; %p A339185 fi %p A339185 od; %p A339185 P:= [P]; %p A339185 t:= convert(P,`+`); %p A339185 if t = x then return P fi; %p A339185 if t > x then %p A339185 while t > x do %p A339185 if q = 2 then return false fi; %p A339185 q:= prevprime(q); %p A339185 t:= t + q - p; %p A339185 P:= [q, op(P[1..-2])]; %p A339185 p:= P[-1]; %p A339185 if t = x then return P fi; %p A339185 od %p A339185 else %p A339185 while t < x do %p A339185 p:= nextprime(p); %p A339185 t:= t + p - q; %p A339185 P:= [op(P[2..-1]),p]; %p A339185 q:= P[1]; %p A339185 if t = x then return P fi; %p A339185 od %p A339185 fi; %p A339185 false %p A339185 end proc: %p A339185 children:= proc(r) local L,x,p,q,t,R; %p A339185 x:= r[1]; %p A339185 L:= r[2]; %p A339185 t:= L[-1]; %p A339185 p:= t[1]; q:= nextprime(p); %p A339185 if t[2]=1 then t:= [q,1]; %p A339185 else t:= [p,t[2]-1],[q,1] %p A339185 fi; %p A339185 R:= [x*q/p,[op(L[1..-2]),t]]; %p A339185 if nops(L) >= 2 then %p A339185 p:= L[-2][1]; %p A339185 q:= L[-1][1]; %p A339185 if L[-2][2]=1 then t:= [q,L[-1][2]+1] %p A339185 else t:= [p,L[-2][2]-1],[q,L[-1][2]+1] %p A339185 fi; %p A339185 R:= R, [x*q/p, [op(L[1..-3]),t]] %p A339185 fi; %p A339185 [R] %p A339185 end proc: %p A339185 f:= proc(n) local Q,t,x,v; %p A339185 uses priqueue; %p A339185 initialize(Q); %p A339185 if n::even then insert([-2^n,[[2,n]]],Q) %p A339185 else insert([-3^n,[[3,n]]],Q) %p A339185 fi; %p A339185 do %p A339185 t:= extract(Q); %p A339185 x:= -t[1]; %p A339185 v:= sumofconsecprimes(x,n); %p A339185 if v <> false then return v[1] fi; %p A339185 for t in children(t) do insert(t,Q) od; %p A339185 od %p A339185 end proc: %p A339185 f(1):= 2: %p A339185 f(2):= 0: %p A339185 map(f, [$1..34]); %Y A339185 Cf. A001222, A143121, A339269. %K A339185 nonn %O A339185 1,1 %A A339185 _J. M. Bergot_ and _Robert Israel_, Nov 26 2020