This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339191 #11 Dec 02 2020 18:48:05 %S A339191 6,60,840,12600,264600,5821200,151351200,4994589600,169816046400, %T A339191 5943561624000,225855341712000,8808358326768000,405184483031328000, %U A339191 20664408634597728000,1136542474902875040000,64782921069463877280000,3757409422028904882240000 %N A339191 Partial products of squarefree semiprimes (A006881). %C A339191 A squarefree semiprime is a product of any two distinct prime numbers. %C A339191 Do all terms belong to A242031 (weakly decreasing prime signature)? %e A339191 The sequence of terms together with their prime indices begins: %e A339191 6: {1,2} %e A339191 60: {1,1,2,3} %e A339191 840: {1,1,1,2,3,4} %e A339191 12600: {1,1,1,2,2,3,3,4} %e A339191 264600: {1,1,1,2,2,2,3,3,4,4} %e A339191 5821200: {1,1,1,1,2,2,2,3,3,4,4,5} %e A339191 151351200: {1,1,1,1,1,2,2,2,3,3,4,4,5,6} %e A339191 The sequence of terms together with their prime signatures begins: %e A339191 6: (1,1) %e A339191 60: (2,1,1) %e A339191 840: (3,1,1,1) %e A339191 12600: (3,2,2,1) %e A339191 264600: (3,3,2,2) %e A339191 5821200: (4,3,2,2,1) %e A339191 151351200: (5,3,2,2,1,1) %e A339191 4994589600: (5,4,2,2,2,1) %e A339191 169816046400: (6,4,2,2,2,1,1) %e A339191 5943561624000: (6,4,3,3,2,1,1) %e A339191 225855341712000: (7,4,3,3,2,1,1,1) %e A339191 8808358326768000: (7,5,3,3,2,2,1,1) %e A339191 405184483031328000: (8,5,3,3,2,2,1,1,1) %t A339191 FoldList[Times,Select[Range[20],SquareFreeQ[#]&&PrimeOmega[#]==2&]] %Y A339191 A000040 lists the primes, with partial products A002110 (primorials). %Y A339191 A001358 lists semiprimes, with partial products A112141. %Y A339191 A002100 counts partitions into squarefree semiprimes (restricted: A338903) %Y A339191 A000142 lists factorial numbers, with partial products A000178. %Y A339191 A005117 lists squarefree numbers, with partial products A111059. %Y A339191 A006881 lists squarefree semiprimes, with partial sums A168472. %Y A339191 A166237 gives first differences of squarefree semiprimes. %Y A339191 A320655 counts factorizations into semiprimes. %Y A339191 A320656 counts factorizations into squarefree semiprimes. %Y A339191 A338898/A338912/A338913 give prime indices of semiprimes. %Y A339191 A338899/A270650/A270652 give prime indices of squarefree semiprimes. %Y A339191 A338901 gives first appearances in the list of squarefree semiprimes. %Y A339191 A339113 gives products of primes of squarefree semiprime index. %Y A339191 Cf. A001221, A112798, A167171, A320732, A320891, A320892, A320894, A320911, A338900, A338902, A339003, A339004. %K A339191 nonn %O A339191 1,1 %A A339191 _Gus Wiseman_, Nov 30 2020