This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339193 #15 Jun 26 2021 06:45:22 %S A339193 1,4,14,86,301,886,3101,3986,13766,13951,19049,48181,57026,75266, %T A339193 85699,199591,263431,295969,298154,302426,426058,882899 %N A339193 Matula-Goebel numbers of unlabeled binary rooted semi-identity trees. %C A339193 Definition: A positive integer belongs to the sequence iff it is 1, 4, or a squarefree semiprime whose prime indices both already belong to the sequence. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A339193 In a semi-identity tree, only the non-leaf branches of any given vertex are distinct. Alternatively, a rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees. %C A339193 The Matula-Goebel number of an unlabeled rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %H A339193 Gus Wiseman, <a href="/A339193/a339193.png">The sequence of all unlabeled binary rooted semi-identity trees by Matula-Goebel number.</a> %e A339193 The sequence of terms together with the corresponding unlabeled rooted trees begins: %e A339193 1: o %e A339193 4: (oo) %e A339193 14: (o(oo)) %e A339193 86: (o(o(oo))) %e A339193 301: ((oo)(o(oo))) %e A339193 886: (o(o(o(oo)))) %e A339193 3101: ((oo)(o(o(oo)))) %e A339193 3986: (o((oo)(o(oo)))) %e A339193 13766: (o(o(o(o(oo))))) %e A339193 13951: ((oo)((oo)(o(oo)))) %e A339193 19049: ((o(oo))(o(o(oo)))) %e A339193 48181: ((oo)(o(o(o(oo))))) %e A339193 57026: (o((oo)(o(o(oo))))) %e A339193 75266: (o(o((oo)(o(oo))))) %e A339193 85699: ((o(oo))((oo)(o(oo)))) %t A339193 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A339193 mgbiQ[n_]:=Or[n==1,n==4,SquareFreeQ[n]&&PrimeOmega[n]==2&&And@@mgbiQ/@primeMS[n]]; %t A339193 Select[Range[1000],mgbiQ] %Y A339193 Counting these trees by number of nodes gives A063895. %Y A339193 A000081 counts unlabeled rooted trees with n nodes. %Y A339193 A111299 ranks binary trees, counted by A001190. %Y A339193 A276625 ranks identity trees, counted by A004111. %Y A339193 A306202 ranks semi-identity trees, counted by A306200. %Y A339193 A306203 ranks balanced semi-identity trees, counted by A306201. %Y A339193 A331965 ranks lone-child avoiding semi-identity trees, counted by A331966. %Y A339193 Cf. A007097, A061775, A196050, A291636, A331963, A331964. %K A339193 nonn %O A339193 1,2 %A A339193 _Gus Wiseman_, Mar 14 2021