cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339194 Sum of all squarefree semiprimes with greater prime factor prime(n).

This page as a plain text file.
%I A339194 #27 Jun 16 2024 05:21:24
%S A339194 0,6,25,70,187,364,697,1102,1771,2900,3999,5920,8077,10234,13207,
%T A339194 17384,22479,26840,33567,40328,46647,56248,65653,77786,93411,107060,
%U A339194 119583,135248,149439,167240,202311,225320,253587,276332,316923,343676,381039,421192,458749
%N A339194 Sum of all squarefree semiprimes with greater prime factor prime(n).
%F A339194 a(n) = prime(n) * Sum_{k=1..n-1} prime(k) = prime(n) * A007504(n-1).
%F A339194 a(n) = A024447(n) - A024447(n-1).
%F A339194 a(n) = A034960(n) - A143215(n). - _Marco Zárate_, Jun 14 2024
%e A339194 The triangle A339116 with row sums equal to this sequence begins (n > 1):
%e A339194     6 = 6
%e A339194    25 = 10 + 15
%e A339194    70 = 14 + 21 + 35
%e A339194   187 = 22 + 33 + 55 + 77
%t A339194 Table[Sum[Prime[i]*Prime[j],{j,i-1}],{i,10}]
%o A339194 (PARI) a(n) = prime(n)*vecsum(primes(n-1)); \\ _Michel Marcus_, Jun 15 2024
%Y A339194 A025129 gives sums of squarefree semiprimes by weight, row sums of A338905.
%Y A339194 A143215 is the not necessarily squarefree version, row sums of A087112.
%Y A339194 A339116 is a triangle of squarefree semiprimes with these row sums.
%Y A339194 A339360 looks at all squarefree numbers, row sums of A339195.
%Y A339194 A001358 lists semiprimes.
%Y A339194 A005117 lists squarefree numbers.
%Y A339194 A006881 lists squarefree semiprimes, with odd terms A046388.
%Y A339194 A024697 is the sum of semiprimes of weight n.
%Y A339194 A168472 gives partial sums of squarefree semiprimes.
%Y A339194 A332765 gives the greatest squarefree semiprime of weight n.
%Y A339194 A338898/A338912/A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
%Y A339194 A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with difference A338900.
%Y A339194 A338904 groups semiprimes by weight.
%Y A339194 A338907/A338908 list squarefree semiprimes of odd/even weight.
%Y A339194 Cf. A000040, A001221, A014342, A098350, A100484, A319613, A320656, A338901, A339003, A339114/A339115.
%K A339194 nonn
%O A339194 1,2
%A A339194 _Gus Wiseman_, Dec 02 2020