cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A339195 Triangle of squarefree numbers grouped by greatest prime factor, read by rows.

This page as a plain text file.
%I A339195 #38 Jan 09 2025 13:21:36
%S A339195 1,2,3,6,5,10,15,30,7,14,21,35,42,70,105,210,11,22,33,55,66,77,110,
%T A339195 154,165,231,330,385,462,770,1155,2310,13,26,39,65,78,91,130,143,182,
%U A339195 195,273,286,390,429,455,546,715,858,910,1001,1365,1430,2002,2145,2730,3003,4290,5005,6006,10010,15015,30030
%N A339195 Triangle of squarefree numbers grouped by greatest prime factor, read by rows.
%C A339195 Also Heinz numbers of subsets of {1..n} that contain n if n>0, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A339195 A019565 in its triangle form, with each row's terms in increasing order. - _Peter Munn_, Feb 26 2021
%C A339195 From _David James Sycamore_, Jan 09 2025: (Start)
%C A339195 Alternative definition, with offset = 1: a(1) = 1. For n>1 if a(n-1) = A002110(k), a(n) = prime(k+1). Otherwise a(n) is the smallest novel squarefree number whose prime factors have already occurred as previous terms.
%C A339195 Permutation of A005117, Squarefree version A379746. (End)
%H A339195 Alois P. Heinz, <a href="/A339195/b339195.txt">Rows n = 0..14, flattened</a>
%H A339195 Michael De Vlieger, <a href="/A339195/a339195.png">Plot p | a(n) at (x,y) = (n,pi(p))</a>, n = 0..2047, 12X vertical exaggeration.
%H A339195 Michael De Vlieger, <a href="/A339195/a339195_1.png">Fan style binary tree showing a(n)</a>, n = 0..2047, with a color function related to the order of a(n) in A019565.
%H A339195 Michael De Vlieger, <a href="/A339195/a339195_2.png">Fan style binary tree showing a(n)</a>, n = 0..2047, with a color function showing 1 in gray, primes in red, primorials in bright green, even squarefree semiprimes in yellow, odd squarefree semiprimes in light green, thereafter, progressively deeper green related to omega(a(n)) = m until m >= 6.
%F A339195 For n > 1, T(n,k) = prime(n) * A261144(n-1,k).
%F A339195 a(n) = A019565(A379770(n)). - _Michael De Vlieger_, Jan 08 2025
%e A339195 Triangle begins:
%e A339195    1
%e A339195    2
%e A339195    3   6
%e A339195    5  10  15  30
%e A339195    7  14  21  35  42  70  105  210
%p A339195 T:= proc(n) option remember; `if`(n=0, 1, (p-> map(
%p A339195       x-> x*p, {seq(T(i), i=0..n-1)})[])(ithprime(n)))
%p A339195     end:
%p A339195 seq(T(n), n=0..6);  # _Alois P. Heinz_, Jan 08 2025
%t A339195 Table[Prime[n]*Sort[Times@@Prime/@#&/@Subsets[Range[n-1]]],{n,5}]
%Y A339195 A011782 gives row lengths.
%Y A339195 A339360 gives row sums.
%Y A339195 A008578 (shifted) is column k = 1.
%Y A339195 A100484 is column k = 2.
%Y A339195 A001748 is column k = 3.
%Y A339195 A002110 is column k = 2^(n-1).
%Y A339195 A070826 is column k = 2^(n-1) - 1.
%Y A339195 A209862 takes prime indices to binary indices in these terms.
%Y A339195 A246867 groups squarefree numbers by Heinz weight, with row sums A147655.
%Y A339195 A261144 divides the n-th row by prime(n), with row sums A054640.
%Y A339195 A339116 is the restriction to semiprimes, with row sums A339194.
%Y A339195 A005117 lists squarefree numbers, ordered lexicographically by prime factors: A019565.
%Y A339195 A006881 lists squarefree semiprimes.
%Y A339195 A072047 counts prime factors of squarefree numbers.
%Y A339195 A319246 is the sum of prime indices of the n-th squarefree number.
%Y A339195 A329631 lists prime indices of squarefree numbers, reversed: A319247.
%Y A339195 A338899/A270650/A270652 give the prime indices of squarefree semiprimes.
%Y A339195 Cf. A001221, A014342, A014466, A019565, A098350, A112798, A320656, A326882, A338901, A379770.
%Y A339195 Cf. A379746.
%K A339195 nonn,tabf
%O A339195 0,2
%A A339195 _Gus Wiseman_, Dec 02 2020
%E A339195 Row n=0 (term 1) prepended by _Alois P. Heinz_, Jan 08 2025