This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A339197 #14 Feb 16 2025 08:34:01 %S A339197 30,348,3459,33145,316164,3013590,28722567,273751765,2609096478, %T A339197 24866992602,237004387635,2258860992595,21528938911842, %U A339197 205189789087374,1955639788756293,18638973217791295,177645865363829526,1693121885638023396,16136945905019298321,153799336805212613275 %N A339197 Number of (undirected) cycles on the n X 3 king graph. %H A339197 Seiichi Manyama, <a href="/A339197/b339197.txt">Table of n, a(n) for n = 2..1000</a> %H A339197 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a> %H A339197 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a> %F A339197 Empirical g.f.: -x^2 * (11*x^4 + 49*x^3 + 69*x^2 + 48*x + 30) / ((x-1)^2 * (6*x^4 + 5*x^3 + 14*x^2 + 8*x - 1)). - _Vaclav Kotesovec_, Dec 09 2020 %o A339197 (Python) %o A339197 # Using graphillion %o A339197 from graphillion import GraphSet %o A339197 def make_nXk_king_graph(n, k): %o A339197 grids = [] %o A339197 for i in range(1, k + 1): %o A339197 for j in range(1, n): %o A339197 grids.append((i + (j - 1) * k, i + j * k)) %o A339197 if i < k: %o A339197 grids.append((i + (j - 1) * k, i + j * k + 1)) %o A339197 if i > 1: %o A339197 grids.append((i + (j - 1) * k, i + j * k - 1)) %o A339197 for i in range(1, k * n, k): %o A339197 for j in range(1, k): %o A339197 grids.append((i + j - 1, i + j)) %o A339197 return grids %o A339197 def A339098(n, k): %o A339197 universe = make_nXk_king_graph(n, k) %o A339197 GraphSet.set_universe(universe) %o A339197 cycles = GraphSet.cycles() %o A339197 return cycles.len() %o A339197 def A339197(n): %o A339197 return A339098(n, 3) %o A339197 print([A339197(n) for n in range(2, 30)]) %Y A339197 Column 3 of A339098. %Y A339197 Cf. A339200. %K A339197 nonn %O A339197 2,1 %A A339197 _Seiichi Manyama_, Nov 27 2020